Skip to main content
Log in

Diurnal and seasonal variations of meteorology and aerosol concentrations in the foothills of the nepal himalayas (Nagarkot: 1,900 m asl)

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A 10-months long monitoring experiment to investigate the diurnal and seasonal variation of aerosol size distribution at Nagarkot (1,900 m asl) in the Kathmadu Valley was carried out as part of a study on katabatic and anabatic influence on pollution dispersion mechanisms. Seasonal means show total aerosol number concentration was highest during post-monsoon season (775 ± 417 cm−3) followed by pre-monsoon (644 ± 429 cm−3) and monsoon (293 ± 205 cm−3) periods. Fine particle concentration (0.25 μm ≤ DP ≤ 2.5 μm) dominated in all seasons, however, contribution by coarse particles (3.0 μm ≤ DP ≤ 10.0 μm) is more significant in the monsoon season with contributions from particles larger than 10.0 μm being negligible. Our results show a regular diurnal pattern of aerosol concentration in the valley with a morning and an evening peak. The daily twin peaks are attributed to calm conditions followed by transitional growth and break down of the valley boundary layer below. The peaks are generally associated with enhancement of the coarse particle fraction. The evening peak is generally higher than the morning peak, and is caused by fresh evening pollution from the valley associated with increased local activities coupled with recirculation of these trapped pollutants. Relatively clean air masses from neighbouring valleys contribute to the smaller morning peak. Gap flows through the western passes of the Kathmandu Valley, which sweep away the valley pollutants towards the eastern passes modulated by the mountain - valley wind system, are mainly responsible for the dominant pollutant circulation patterns exhibited within the valley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ADB/ICIMOD, 2006: Environment Assessment of Nepal: Emerging Issues and Challenges. Asian Development Bank / International Centre for Integrated Mountain Development (ICIMOD), 225 pp.

  • Akimoto, H., 2003: Global air quality and pollution. Science, 302, 1716–1719.

    Article  Google Scholar 

  • Alford, D., 1992: Hydrological Aspects of the Himalayan Region. ICIMOD, 81 pp.

    Google Scholar 

  • Aryal, R. K., B.-K. Lee, R. Karki, A. Gurung, J. Kandasamy, B. K. Pathak, S. Sharma, and N. Giri, 2008: Seasonal PM10 dynamics in Kathmandu Valley. Atmos. Environ., 42, 8623–8633.

    Article  Google Scholar 

  • Beniston, M., 1987: A numerical study of atmospheric pollution over complex terrain in Switzerland. Bound-Lay. Meteorol., 41, 75–96.

    Article  Google Scholar 

  • Brulfert, G., C. Chemel, E. Chaxel, J. P. Chollet, B. Jouve, and H. Villard, 2006: Assessment of 2010 air quality in two Alpine valleys from modelling: Weather type and emission scenarios. Atmos. Environ., 40, 7893–7907.

    Article  Google Scholar 

  • Carrico, C. M., M. H. Bergin, A. B. Shrestha, J. E. Dibb, L. Gomes, and J. M. Harris, 2003: The importance of carbon and mineral dust to seasonal aerosol properties in the Nepal Himalaya. Atmos. Environ., 37, 2811–2824.

    Article  Google Scholar 

  • Deshmukh, D. K., and M. K. Deb, 2013: Size distribution and seasonal variation of size-segregated particulate matter in the ambient air of Raipur city, India. Air Qual. Atmos. Health, 6, 259–276.

    Article  Google Scholar 

  • Gautam, R., and Coauthors, 2011: Accumulation of aerosols over the Indo- Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon season. Atmos. Chem. Phy., 11, 12841–12863.

    Article  Google Scholar 

  • Grigoras, G., V. Cuculeanu, G. Ene, G. Mocioaca, and A. Deneanu, 2012: Air pollution dispersion modeling in a polluted industrial area of complex terrain from Romania. Rom. Rep. Phys., 64, 173–186.

    Google Scholar 

  • Guo, J., S. Kang, J. Huang, Q. Zhang, L. Tripathee, and M. Sillanpaa, 2015: Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa. Atmos. Res., 153, 87–97.

    Article  Google Scholar 

  • Gurung, A., and M. L. Bell, 2013: The state of scientific evidence on air pollution and human helath in Nepal. Environ. Res., 124, 54–64.

    Article  Google Scholar 

  • Hindman, E. E., and B. P. Upadhayay, 2002: Air pollution transport in the Himalayas of Nepal and Tibet during the 1995-1996 dry season. Atmos. Environ., 36, 727–739.

    Article  Google Scholar 

  • Kajino, M., W. Winiwarter, and H. Ueda, 2006: Modeling retained water concent in measured aerosol mass. Atmos. Environ., 40, 5202–5213.

    Article  Google Scholar 

  • Kan, H., and B. Chen, 2004: Particulate air pollution in urban areas of Shanghai, China: health-based economic assessment. Sci. Total Environ., 322, 71–79.

    Article  Google Scholar 

  • Kim, D., and W. R. Stockwell, 2007: An online coupled meteorological and air quality modeling study of the effect of complex terrain on the regional transport and transformation of air pollutants over the Western United States. Atmos. Environ., 41, 2319–2334.

    Article  Google Scholar 

  • Liao, J., T. Wang, Z. Jiang, B. Zhuang, M. Xie, C. Yin, X. Wang, J. Zhu, Y. Fu, and Y. Zhang, 2015: WRF/Chem modeling of the impacts of urban expansion on regional climate and air pollutants in Yangtze Delta, China. Atmos. Environ., 106, 204–214.

    Article  Google Scholar 

  • Marinoni, A., and Coauthors, 2010: Aerosol mass and black carbon concentration, a two year record at NCO-P (5079 m, Southern Himalayas). Atmos. Chem. Phy., 10, 8551–8562.

    Article  Google Scholar 

  • Martilli, A., and D. G. Steyn, 2004: A Numerical Study of Recirculation Processes in the Lower Fraser Valley (British Columbia, Canada). Air Pollution Modelling and Its Application XVII, Banff, 727 pp.

    Google Scholar 

  • Miao, Y., S. Liu, Y. Zheng, S. Wang, and B. Chen, 2015: Numerical study of the effects of topography and urbanization on the local atmospheric circulations over the Beijing-Tianjin-Hebei, China. Adv. Meteorol., 2015, http://dx.doi.org/10.1155/2015/397070.

    Google Scholar 

  • Min, H., J. Jing, and W. Zhijun, 2005: Chemical compositions of precipitation and scavenging of particles in Beijing. Sci. China Ser. B., 48, 265–272.

    Article  Google Scholar 

  • Nakajima, C., 1976: Movement and development of the clouds over Khumbu Himal in winter. Seppyo, 38, 89–92.

    Google Scholar 

  • Panday, A. K., 2006: The Diurnal Cycle of Air Pollution in the Kathmandu Valley, Nepal. Ph.D. Thesis, Center for Global Change Science, Massachusetts Institute of Technology, 234 pp.

    Google Scholar 

  • Panday, A. K., and R. G. Prinn, 2009: Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: Observations. J. Geophys. Res., 114.

    Google Scholar 

  • Panday, A. K., R. G. Prinn, and C. Schar, 2009: Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results. J. Geophys. Res., 114.

    Google Scholar 

  • Putero, D., and Coauthors, 2015: Seasonal variation of ozone and black carbon observed at Pakanjol, an urban site in the Kathmandu Valley, Nepal. Atmos. Chem. Phy. Discuss., 15, 22527–22566.

    Article  Google Scholar 

  • Radke, L. F., P. V. Hobbs, and M. W. Eltgroth, 1980: Scavenging of Aerosol particles by precipitation. J. Appl. Meteor., 19, 715–722.

    Article  Google Scholar 

  • Regmi, R. P., T. Kitada, and G. Kurata, 2002: Numerical Simulation of Late Wintertime Local Flows in Kathmandu Valley, Nepal: Implication for Air Pollution Transport. J. Appl. Meteor., 42, 389–403.

    Article  Google Scholar 

  • Reid, J. D., 1978: Studies of pollutant transport and turbulent dispersion over rugged Mountainous terrain near Climax, Colorado. Atmos. Env., 13, 23–28.

    Article  Google Scholar 

  • Saha, A., and K. K. Moorthy, 2004: Impact of Precipitation on Aerosol Spectral Optical Depth and Retrieved Size Distributions: A Case Study. J. Appl. Meteor., 43, 902–914.

    Article  Google Scholar 

  • Segal, M., C.-H. Yu, and R. A. Pielke, 1988: Model Evaluation of the Impact of Thermally Induced Valley Circulation in the Lake Powell Area on Long-Range Pollutant Transport. JAPCA, 38, 163–170.

    Article  Google Scholar 

  • Sellegri, K., P. Laj, H. Venzac, J. Boulon, D. Picard, P. Villani, P. Bonasoni, A. Marinoni, P. Cristofanelli, and E. Vuillermmoz, 2010: Seasonal variations of aerosol size distributions based on long-term measurements at the high altitude Himalayan site of Nepal Climate Observatory- Pyramid (5,079 m), Nepal. Atmos. Chem. Phy., 10, 6537–6566.

    Article  Google Scholar 

  • Shrestha, A. B., C. P. Wake, P. A. Mayewski, and J. E. Dibb, 1999: Maximum Temperature Trends in the Himalaya and Its Vicinity: An Analysis Based on Temperature Records from Nepal for the Period 1971-94. J. Climate, 12, 2775–2786.

    Article  Google Scholar 

  • Shrestha, A. B., C. P. Wake, J. E. Dibb, P. A. Mayewski, S. I. Whitlow, G. R. Carmichael, and M. Ferm, 2000: Seasonal variations in aerosol concentrations and compositions in the Nepal Himalaya. Atmos. Environ., 34, 3349.

    Article  Google Scholar 

  • Shrestha, A. B., C. P. Wake, J. E. Dibb, and S. I. Whitlow, 2002: Aerosol and Precipitation Chemistry at a Remote Himalayan Site in Nepal. Aerosol Sci. Technol., 36, 441–456.

    Article  Google Scholar 

  • Shrestha, M. L., 2000: Interannual variation of summer monsoon rainfall over Nepal and its relation to Southern Oscillation Index. Meteorol. Atmos. Phys., 75, 21–28.

    Article  Google Scholar 

  • Shrestha, P., and A. P. Barros, 2010: Joint spatial variability of aerosol, clouds and rainfall in the Himalayas from satellite data. Atmos. Chem. Phy., 10, 8305–8317.

    Article  Google Scholar 

  • Shrestha, P., A. P. Barros, and A. Khlystov, 2010: Chemical composition and aerosol size distribution of the middle mountain range in the Nepal Himalayas during the 2009 pre-monsoon season. Atmos. Chem. Phy., 10, 11605–11621.

    Article  Google Scholar 

  • Thapa, R. B., and Y. Murayama, 2011: Urban growth modeling of Kathmandu metropolitan region, Nepal. Comput. Environ. Urban Syst., 35, 25–34.

    Article  Google Scholar 

  • Venzac, H., and Coauthors, 2008: High frequency new particle formation in the Himalayas. Proc. Natl. Acad. Sci., 105, 15666–15671.

    Article  Google Scholar 

  • Whiteman, C. D., 2000: Mountain Meteorology. Oxford University Press, 355 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudra K. Shrestha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, R.K., Gallagher, M.W. & Connolly, P.J. Diurnal and seasonal variations of meteorology and aerosol concentrations in the foothills of the nepal himalayas (Nagarkot: 1,900 m asl). Asia-Pacific J Atmos Sci 52, 63–75 (2016). https://doi.org/10.1007/s13143-016-0002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-016-0002-3

Key words

Navigation