Skip to main content
Log in

Mantle melting factors and amagmatic crustal accretion of the Gakkel ridge, Arctic Ocean

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Spreading rate is a primary factor of mantle melting and tectonic behavior of the global mid-ocean ridges. The spreading rate of the Gakkel ridge decreases gradually from west to east. However, the Gakkel ridge can be divided into four thick-and-thin zones with varying crustal thicknesses along ridge axis. This phenomenon indicates that mantle melting of the Gakkel ridge is not a simple function of spreading rate. Mantle temperature, water content, mantle composition, and other factors are important in crustal accretion processes. Based on gravity-derived crustal thickness and wet melting model, we estimate that the mantle potential temperatures of the four zones are 1 270, 1 220, 1 280, and 1 280°C (assuming that mantle water content equals to global average value), with corresponding mantle water contents of 210, 0, 340, and 280 mg/kg (assuming that mantle potential temperature is 1 260°C), respectivly. The western thinned crust zone is best modeled with low mantle temperature, whereas the other zones are mainly controlled by the enhanced conduction caused by the slower spreading rate. Along the Gakkel ridge, the crustal thickness is consistent with rock samples types. Predominated serpentinized peridotite and basalt are found in the area with crustal thickness 〈1.5 km and 〉2.5 km, respectively. The rock samples are including from basalt to peridotite in the area with crustal thickness between 1.5 and 2.5 km. Based on this consistency, the traditional magmatic accretion zone accounted for only 44% and amagmatic accretion accounted for 29% of the Gakkel ridge. The amagmatic accretion is a significant characteristic of the ultra-slow spreading ridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asimow P D, Langmuir C H. 2003. The importance of water to oceanic mantle melting regimes. Nature, 421: 815–820

    Article  Google Scholar 

  • Behn M D, Boettcher M S, Hirth G. 2007. Thermal structure of oceanic transform faults. Geology, 35(4): 307–310

    Article  Google Scholar 

  • Cannat M, Sauter D, Bezos A, et al. 2008. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochem Geophys Geosyst, 9(4): 144, doi: 10.1029/2007GC001676

    Article  Google Scholar 

  • Cannat M, Sauter D, Mendel V, et al. 2006. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology, 34(7): 605–608

    Article  Google Scholar 

  • Chen Y J. 1996. Constraints on melt production rate beneath the midocean ridges based on passive flow models. Pure Appl Geophys, 146(34): 589–620

    Article  Google Scholar 

  • Coakley B J, Cochran J R. 1998. Gravity evidence of very thin crust at the Gakkel Ridge (Arctic Ocean). Earth Planet Sci Lett, 162(1–4): 81–95

    Article  Google Scholar 

  • Davies J H, Bickle M. 1991. A physical model for the volume and composition of melt produced by hydrous fluxing above subduction zones. Phil Trans: R Soc London, 335(1638): 355–364

    Article  Google Scholar 

  • DeMets C, Gordon R G, Argus D F, et al. 1990. Current plate motions. Geophys J Int, 101(2): 425–478

    Article  Google Scholar 

  • Dick H J B, Lin Jian, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405–412

    Article  Google Scholar 

  • Divins D L. 2003. Total Sediment Thickness of the World’s Oceans and Marginal Seas. Boulder, CO: NOAA National Geophysical Data Center

    Google Scholar 

  • Edwards M H, Kurras G J, Tolstoy M, et al. 2001. Evidence of recent volcanic activity on the ultraslow-spreading Gakkel ridge. Nature, 409: 808–812

    Article  Google Scholar 

  • Georgen J E, Lin Jian, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets. Earth Planet Sci Lett, 187(3–4): 283–300

    Article  Google Scholar 

  • Jakobsson M, Mayer L, Coakley B, et al. 2012. The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0. Geophys Res Lett, 39(12): L12609, doi: 10.1029/2012GL052219

    Google Scholar 

  • Jokat W, Ritzmann O, Schmidt-Aursch M C, et al. 2003. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge. Nature, 423(6943): 962–965

    Article  Google Scholar 

  • Jokat W, Schmidt-Aursch M C. 2007. Geophysical characteristics of the ultraslow spreading Gakkel Ridge, Arctic Ocean. Geophys J Int, 168(3): 983–998

    Article  Google Scholar 

  • Kenyon S, Forsberg R, Coakley B. 2008. New gravity field for the Arctic. Eos, Transactions American Geophysical Union, 89(32): 289–290

    Article  Google Scholar 

  • Langmuir C H, Forsyth D W. 2007. Mantle melting beneath midocean ridges. Oceanography, 20(1): 78–89

    Article  Google Scholar 

  • Langmuir C H, Klein E M, Plank T. 1992. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. In: Morgan J P, Blackman D K, Sinton J M, eds. Mantle Flow and Melt Generation at Mid-Ocean Ridges. Geophys Monogr Ser, 71: 361

    Google Scholar 

  • McKenzie D P, Bickle M J. 1988. The volume and composition of melt generated by extension of the lithosphere. J Petrol, 29: 625–679

    Article  Google Scholar 

  • Michael P J, Langmuir C H, Dick H, et al. 2003. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature, 423: 956–961

    Article  Google Scholar 

  • Muller M R, Minshull T A, White R S. 2000. Crustal structure of the Southwest Indian Ridge at the Atlantis II fracture zone. J Geophys Res, 105(B11): 25809–25828

    Article  Google Scholar 

  • Müller R D, Sdrolias M, Gaina C, et al. 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst, 9(4): Q04006, doi: 10.1029/2007GC001743

    Article  Google Scholar 

  • Oldenburg D W. 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39(4): 526–536

    Article  Google Scholar 

  • Reid I, Jackson H R. 1981. Oceanic spreading rate and crustal thickness. Mar Geophys Res, 5(2): 165–172

    Google Scholar 

  • Robinson C J, Bickle M J, Minshull T A, et al. 2001. Low degree melting under the Southwest Indian Ridge: the roles of mantle temperature, conductive cooling and wet melting. Earth Planet Sci Lett, 188(3–4): 383–398

    Article  Google Scholar 

  • Taylor P T, Kovacs L C, Vogt P R, et al. 1981. Detailed aeromagnetic investigation of the Arctic Basin: 2. J Geophys Res, 86(B7): 6323–6333

    Article  Google Scholar 

  • Wessel P, Smith W H F. 1995. New version of the Generic Mapping Tools released. EOS Trans AGU, 76: 329

    Article  Google Scholar 

  • White R S, McKenzie D, O’Nions R K. 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions. J Geophys Res, 97(B13): 19683–19715

    Article  Google Scholar 

  • Zhang Tao, Lin Jian, Gao Jinyao. 2013. Magmatism and tectonic processes in Area a hydrothermal vent on the Southwest Indian Ridge. Sci China: Earth Sci, 56(12): 2186–2197, doi: 10.1007/s11430-013-4630-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Additional information

Foundation item: Chinese Polar Environment Comprehensive Investigation and Assessment Programmes under contract Nos CHINARE 2013-03-03 and 2013-04-03; the National Natural Science Foundation of China under contract No. 41106049.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Gao, J., Chen, M. et al. Mantle melting factors and amagmatic crustal accretion of the Gakkel ridge, Arctic Ocean. Acta Oceanol. Sin. 34, 42–48 (2015). https://doi.org/10.1007/s13131-015-0686-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-015-0686-8

Key words

Navigation