Skip to main content
Log in

Bacterial and archaeal community structures in the Arctic deep-sea sediment

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Microbial community structures in the Arctic deep-sea sedimentary ecosystem are determined by organic matter input, energy availability, and other environmental factors. However, global warming and earlier ice-cover melting are affecting the microbial diversity. To characterize the Arctic deep-sea sediment microbial diversity and its relationship with environmental factors, we applied Roche 454 sequencing of 16S rDNA amplicons from Arctic deep-sea sediment sample. Both bacterial and archaeal communities’ richness, compositions and structures as well as taxonomic and phylogenetic affiliations of identified clades were characterized. Phylotypes relating to sulfur reduction and chemoorganotrophic lifestyle are major groups in the bacterial groups; while the archaeal community is dominated by phylotypes most closely related to the ammonia-oxidizing Thaumarchaeota (96.66%) and methanogenic Euryarchaeota (3.21%). This study describes the microbial diversity in the Arctic deep marine sediment (>3 500 m) near the North Pole and would lay foundation for future functional analysis on microbial metabolic processes and pathways predictions in similar environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller J Y, Kemp P F. 2008. Are Archaea inherently less diverse than Bacteria in the same environments? FEMS Microbiology Ecology, 65(1): 74–87

    Article  Google Scholar 

  • Arnosti C. 2008. Functional differences between Arctic seawater and sedimentary microbial communities: contrasts in microbial hydrolysis of complex substrates. FEMS Microbiology Ecology, 66(2): 343–351

    Article  Google Scholar 

  • Auguet J C, Barberan A, Casamayor E O. 2009. Global ecological patterns in uncultured Archaea. The ISME Journal, 4(2): 182–190

    Article  Google Scholar 

  • Bano N, Ruffin S, Ransom B, et al. 2004. Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages. Applied and Environmental Microbiology, 70(2): 781–789

    Article  Google Scholar 

  • Bland J, Brock T D. 1973. The marine bacterium Leucothrix mucor as an algal epiphyte. Marine Biology, 23(4): 283–292

    Article  Google Scholar 

  • Boetius A, Albrecht S, Bakker K, et al. 2013. Export of algal biomass from the melting Arctic Sea ice. Science, 339(6126): 1430–1432

    Article  Google Scholar 

  • Boetius A, Damm E. 1998. Benthic oxygen uptake, hydrolytic potentials and microbial biomass at the Arctic continental slope. Deep-Sea Research Part I: Oceanographic Research Papers, 45(2–3): 239–275

    Article  Google Scholar 

  • Bowman JP, McCuaig RD. 2003. Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Applied and Environmental Microbiology, 69(5): 2463–2483

    Article  Google Scholar 

  • Bowman J S, Rasmussen S, Blom N, et al. 2011. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene. The ISME Journal, 6(1):11–20

    Article  Google Scholar 

  • Clarke A. 2003. The polar deep seas. In: Ecosystems of the World. The Netherlands: Elsevier Science, 239–260

    Google Scholar 

  • Cottrell M T, Kirchman D L. 2000. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Applied and Environmental Microbiology, 66(4): 1692–1697

    Article  Google Scholar 

  • Deming J W. 1986. Ecological strategies of barophilic bacteria in the deep ocean. Microbiological Sciences, 3(7): 205–211

    Google Scholar 

  • Fahl K, Stein R. 1997. Modern organic carbon deposition in the Laptev Sea and the adjacent continental slope: surface water productivity vs. terrigenous input. Organic Geochemistry, 26(5–6): 379–390

    Article  Google Scholar 

  • Forschner S R, Sheffer R, Rowley D C, et al. 2009. Microbial diversity in Cenozoic sediments recovered from the Lomonosov Ridge in the Central Arctic Basin. Environmental Microbiology, 11(3): 630–639

    Article  Google Scholar 

  • Galand P E, Casamayor E O, Kirchman D L, et al. 2009. Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. The ISME Journal, 3(7): 860–869

    Article  Google Scholar 

  • Gooday A J, Turley C M, Allen J A. 1990. Responses by benthic organisms to inputs of organic material to the ocean floor: a review. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 331(1616): 119–138

    Article  Google Scholar 

  • Gosselin M, Levasseur M, Wheeler P A, et al. 1997. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 44(8): 1623–1644

    Article  Google Scholar 

  • Hinzman L D, Bettez N D, Bolton W R, et al. 2005. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change, 72(3): 251–298

    Article  Google Scholar 

  • Huson D H, Mitra S, Ruscheweyh H J, et al. 2011. Integrative analysis of environmental sequences using MEGAN4. Genome Research, 21(9): 1552–1560

    Article  Google Scholar 

  • Jacob M, Soltwedel T, Boetius A, et al. 2013. Biogeography of deep-sea benthic bacteria at regional scale (LTER HAUSGARTEN, Fram Strait, Arctic). PLoS One, 8(9): e72779

    Article  Google Scholar 

  • Jannasch H W, Taylor C D. 1984. Deep-sea microbiology. Annual Review of Microbiology, 38(1): 487–487

    Article  Google Scholar 

  • Jørgensen B B. 1982. Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature, 296(5858): 643–645

    Article  Google Scholar 

  • Kasai Y, Kishira H, Sasaki T, et al. 2002. Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environmental Microbiology, 4(3): 141–147

    Article  Google Scholar 

  • Kirchman D L. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiology Ecology, 39(2): 91–100

    Google Scholar 

  • Kirchman D L, Morán X A G, Ducklow H. 2009. Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nature Reviews Microbiology, 7(6): 451–459

    Google Scholar 

  • Luo Haiwei. 2012. Predicted protein subcellular localization in dominant surface ocean bacterioplankton. Applied and Environmental Microbiology, 78(18): 6550–6557

    Article  Google Scholar 

  • Macdonald R W, Solomon S M, Cranston R E, et al. 1998. A sediment and organic carbon budget for the Canadian Beaufort Shelf. Marine Geology, 144(4): 255–273

    Article  Google Scholar 

  • Methé B A, Nelson K E, Deming J W, et al. 2005. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Procee-dings of the National Academy of Sciences of the United States of America, 102(31): 10913–10918

    Article  Google Scholar 

  • Mori K, Iino T, Suzuki K I, et al. 2012. Aceticlastic and NaCl-requiring methanogen “Methanosaeta pelagica” sp. nov., isolated from marine tidal flat sediment. Applied and Environmental Microbiology, 78(9): 3416–3423

    Article  Google Scholar 

  • Nedashkovskaya O I, Kim S B, Han S K, et al. 2004. Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov. International Journal of Systematic and Evolutionary Microbiology, 54(Pt4): 1017–1023

    Article  Google Scholar 

  • Perdue E M, Koprivnjak J F. 2007. Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments. Estuarine, Coastal and Shelf Science, 73: 65–72

    Article  Google Scholar 

  • Pester M, Schleper C, Wagner M. 2011. The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Current Opinion in Microbiology, 14(3): 300–306

    Article  Google Scholar 

  • Peterson B J, Holmes R M, McClelland J W, et al. 2002. Increasing river discharge to the Arctic Ocean. Science, 298(5601): 2171–2173

    Article  Google Scholar 

  • Price M N, Dehal P S, Arkin A P, et al. 2010. FastTree—approximately maximum-likelihood trees for large alignments. PloS One, 5(3): 9490

    Article  Google Scholar 

  • Pruesse E, Quast C, Knittel K, et al. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35(21): 7188–7196

    Article  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1): 590–596

    Article  Google Scholar 

  • R Core Team. 2014. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing

    Google Scholar 

  • Rappe M S, Kemp P F, Giovannoni SJ. 1997. Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina. Limnology and Oceanography, 42(5): 811–826

    Article  Google Scholar 

  • Ravenschlag K, Sahm K, Amann R. 2001. Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Applied and Environmental Microbiology, 67(1): 387–395

    Article  Google Scholar 

  • Ravenschlag K, Sahm K, Pernthaler J, et al. 1999. High bacterial diversity in permanently cold marine sediments. Applied and Environ-mental Microbiology, 65(9): 3982–3989

    Google Scholar 

  • Sahm K, Berninger UG. 1998. Abundance, vertical distribution, and community structure of benthic prokaryotes from permanently cold marine sediments (Svalbard, Arctic Ocean). Marine Ecology Progress Series, 165: 71–80

    Article  Google Scholar 

  • Sahm K, Knoblauch C, Amann R. 1999. Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine arctic sediments. Applied and Environmental Microbiology, 65(9): 3976–3981

    Google Scholar 

  • Schloss P D, Westcott S L, Ryabin T, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported soft-ware for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23): 7537–7541

    Article  Google Scholar 

  • Smith K S, Ingram-Smith C. 2007. Methanosaeta, the forgotten methanogen? Trends in Microbiology, 15(4): 150–155

    Article  Google Scholar 

  • Stein R, Grobe H, Wahsner M. 1994. Organic carbon, carbonate, and clay mineral distributions in eastern central Arctic Ocean surface sediments. Marine Geology, 119(3–4): 269–285

    Article  Google Scholar 

  • Stein R, MacDonald R W. 2004. The Organic Carbon Cycle in the Arctic Ocean. Berlin: Springer Verlag

    Book  Google Scholar 

  • Suzuki M T, Rappe M S, Haimberger Z W, et al. 1997. Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Applied and Environmental Microbiology, 63(3): 983–989

    Google Scholar 

  • Teske A, Durbin A, Ziervogel K, et al. 2011. Microbial community com-position and function in permanently cold seawater and sediments from an Arctic fjord of Svalbard. Applied and Environmental Microbiology, 77(6): 2008–2018

    Article  Google Scholar 

  • Thomas D N, Lara R J, Eicken H, et al. 1995. Dissolved organic matter in Arctic multi-year sea ice during winter: major components and relationship to ice characteristics. Polar Biology, 15(7): 477–483

    Article  Google Scholar 

  • Tian Fei, Yu Yong, Chen Bo, et al. 2009. Bacterial, archaeal and eukaryotic diversity in Arctic sediment as revealed by 16S rRNA and 18S rRNA gene clone libraries analysis. Polar Biology, 32(1): 93–103

    Article  Google Scholar 

  • Wagner-Döbler I, Biebl H. 2006. Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol, 60(1): 255–280

    Article  Google Scholar 

  • Wang Yan, Yu Min, Austin B, et al. 2012. Oleispira lenta sp. nov., a novel marine bacterium isolated from Yellow sea coastal seawater in Qingdao, China. Antonie van Leeuwenhoek, 101(4): 787–794

    Article  Google Scholar 

  • Wheeler P A, Gosselin M, Sherr E, et al. 1996. Active cycling of organic carbon in the central Arctic Ocean. Nature, 380(6576): 697–699

    Article  Google Scholar 

  • Zeng Yinxin, Zou Yang, Chen Bo, et al. 2011. Phylogenetic diversity of sediment bacteria in the northern Bering Sea. Polar Biology, 34(6): 907–991

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Xiao.

Additional information

Foundation item: The National Natural Science Foundation of China under contract No. 41121064; the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No. U1406403; the Science Foundation for Post Doctorate Research from the Chinese Academy of Sciences under contract No. 2012M511072.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, Q., Li, C. et al. Bacterial and archaeal community structures in the Arctic deep-sea sediment. Acta Oceanol. Sin. 34, 93–113 (2015). https://doi.org/10.1007/s13131-015-0624-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-015-0624-9

Key words

Navigation