Skip to main content
Log in

Experimental Investigations on the Effect of Severe Plastic Deformation Through End Milling on X-Ray Peak Broadening and Microcrystalline Characteristics of Nimonic 263

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present work, the quantitative contributions of severe plastic deformation (SPD) through machining on the microcrystalline features and fatigue life of SPD processed Nimonic 263 have been investigated. X-ray diffraction line profile analysis (XRDLPA) has been executed to compute the likely makeover of microcrystalline characteristics such as crystallite size, lattice strain and dislocation density using full width at half maximum of diffraction peak, and additionally, the influences of these characteristics on fatigue life of the SPD processed samples have been analyzed. To deconvolute these characteristics, Williamson–Hall methods such as uniform deformation model, uniform energy density deformation models (UEDM) and uniform stress deformation model (USDM) are employed. The XRDLPA of machined samples has confirmed a significant broadening of peaks, due to lattice distortions and grain refinement during machining, and a plot of root mean square (RMS) of lattice strain (εrms) versus lattice strain (ε) has resulted in no inconsistency related to the lattice plane and crystallographic direction. Further, other related physical parameters such as uniform stress, Young’s modulus and energy density are also evaluated using UEDM and USDM models. As a result of the study, it is clear that the substantial influence comes from tool nomenclature over machining parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shin D H, Kim I, Kim J, Park K T, Acta Mater49 (2001) 1285.

    Article  CAS  Google Scholar 

  2. Vomacka P, Walburger H, Mater Sci Forum347 (2000) 592.

    Article  Google Scholar 

  3. Rashid W B, Goel S, Davim J P, Joshi S N, Int J Adv Manuf Technol82 (2016) 451.

    Article  Google Scholar 

  4. Javidi A, Rieger U, Eichlseder U W, Int J Fatigue30 (2008) 2050.

    Article  CAS  Google Scholar 

  5. Thiele J D, Melkot S N, J Mater Proc Technol94 (1999) 216.

    Article  Google Scholar 

  6. Valiev R Z, Langdon T G, Prog Mater Sci51 (2006) 881.

    Article  CAS  Google Scholar 

  7. Langdon T G, Mater Sci Eng A462 (2007) 3.

    Article  Google Scholar 

  8. Huang C X, Yang G, Gao Y L, Wu S D, Zhang Z F, Mater Sci Eng A485 (2008) 643.

    Article  Google Scholar 

  9. Fleck N A, Ashby M F, Hutchinson J W, Scr Mater48 (2003) 179.

    Article  CAS  Google Scholar 

  10. Löffler J, Weissmüller J, Gleiter H, Phys Rev B Condens Mater52 (1995) 7076.

    Article  Google Scholar 

  11. Zhong Y, Ping D, Song X, Yin F, J Alloys Compd. 476 (2009) 113.

    Article  CAS  Google Scholar 

  12. Borbély A, Ungár T, C R Phys13 (2012) 293.

    Google Scholar 

  13. Ungár T, Dragomir I, Révész A, Borbély A, J Appl Crystallogr32 (1999) 992.

    Article  Google Scholar 

  14. Sivasankaran S, Sivaprasad K, Narayanasamy R, Satyanarayana P V, Mater Charact62 (2011) 661.

    Article  CAS  Google Scholar 

  15. Biju V, Neena S, Vrinda V, Salini S L, J Mater Sci43 (2008) 1175.

    Article  CAS  Google Scholar 

  16. Williamson G K, Hall W H, Acta Metall1 (1953) 22.

    Article  CAS  Google Scholar 

  17. Garabagh M R M, Nedjad S H, Shirazi H, Mobarekeh M I, Ahmadabadi M N, Thin Solid Films516 (2008) 8117.

    Article  Google Scholar 

  18. Rai R, Triloki T, Singh B K, Appl Phys A122 (2016) 774.

    Article  Google Scholar 

  19. Reddy B S B, Rajasekhar K, Venu M, Dilip J J S, Das S, Das K, J Alloys Compd465 (2008) 97.

    Article  CAS  Google Scholar 

  20. Miraghaei S, Abachi P, Madaah-Hosseini H R, Bahrami A, J Mater Process Technol203 (2008) 554.

    Article  CAS  Google Scholar 

  21. Birkholz M, J Appl Crystallogr39 (2006) 925.

    Article  Google Scholar 

  22. Das J, Maity T, Trans IIM65 (2012) 571.

    CAS  Google Scholar 

  23. Nagaraj M, Ravisankar B, Mater Res Express6 (2018) 036504.

    Article  Google Scholar 

  24. Lalwani D I, Mehta N K, Jain P K, J Mater Process Technol206 (2009) 167.

    Article  Google Scholar 

  25. Bartarya G, Choudhury S K, Int J Mach Mater11 (2012) 280.

    Google Scholar 

  26. Fukuda Y, Oh-Ishi K, Horita Z, LangdonT G, Acta Mater50 (2002) 1359.

    Article  CAS  Google Scholar 

  27. Balamurugan K, Uthayakumar M, Gowthaman S, Pandurangan R, Eng Fail Anal92 (2017) 268.

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gowthaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowthaman, S., Jagadeesha, T. Experimental Investigations on the Effect of Severe Plastic Deformation Through End Milling on X-Ray Peak Broadening and Microcrystalline Characteristics of Nimonic 263. Trans Indian Inst Met 73, 1215–1226 (2020). https://doi.org/10.1007/s12666-020-01967-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01967-z

Keywords

Navigation