Skip to main content

Advertisement

Log in

Assessment of heavy metals contamination and their potential toxicity in the surface sediments of Sfax Solar Saltern, Tunisia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Concentrations of six heavy metals such as Fe, Pb, Zn, Cu, Ni and Cd have been examined in 20 surface sediment samples from Sfax solar saltern in order to evaluate their contamination levels; such concentrations (expressed in mg/kg of dry weight) have shown that Fe varied from 8750 to 8889.1, Pb from 18.98 to 233.46, Zn from 39.92 to 574.89, Cu from 13 to 98, Ni from 17.47 to 160.92, and Cd from 4.86 to 37.42. Importantly, the highest metal concentrations—except for Fe—have been more significant in sites frequently exposed to the industrial plumes of the local pollutant sources on the one hand and in sites often overwhelmed by high tide marine’s water draining industrial waste from the port area on the other hand. Calculated enrichment factors have shown a spatial distribution in consistency with that related to concentrations. Complementary statistical approaches based on principal component analysis and hierarchical cluster analysis have proved that Fe is natural and other analyzed metals are anthropogenic. The geoaccumulation index has shown different contamination and toxicity levels, which have been confirmed by the study of mean-effect range medium-quotient, demonstrating a high probability of toxicity ranging from 49 to 76%, especially at sites with the highest metal concentrations. It has been suggested by the potential ecological risk index that the combined ecological risk of anthropogenic metal differ from one site to another, which highly significant in the case of Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbes M, Baati H, Guermazi S, Messina C, Santulli A, Gharsallah N, Ammar E (2013) Biological properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian solar saltern. BMC Complement Altern Med 13:255–263

    Article  Google Scholar 

  • Abdollahi S, Raoufi Z, Faghiri I, Savari A, Nikpour Y, Mansouri A (2013) Contamination levels and spatial distributions of heavy metals and PAHs in surface sediment of Imam Khomeini Port, Persian Gulf, Iran. Mar Pollut Bull 71:336–345

    Article  Google Scholar 

  • Abid O, Sellami-Kammoun A, Ayadi H, Drira Z, Bouaïn A, Aleya L (2008) Biochemical adaptation of phytoplankton to salinity and nutrient gradients in a coastal solar saltern, Tunisia. Estuar Coast Shelf Sci 80:391–400

    Article  Google Scholar 

  • Adamo P, Arienzo M, Imperato M, Naimo D, Nardi G, Stanzione D (2005) Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port. Chemosphere 61:800–809

    Article  Google Scholar 

  • Aderinola OJ, Clarke EO, Olarinmoye OM, Kusemiju V, Anatekhai MA (2009) Heavy metals in surface water, sediments, fish and Perwinklesof Lagos Lagoon. Am Eurasian J Agric Environ Sci 5(5):609–617

    Google Scholar 

  • Ahdy HHH, Khaled A (2009) Heavy metals contamination in sediments of the western part of the Egyptian Mediterranean Sea. Aust J Basic Appl Sci 3:3330–3336

    Google Scholar 

  • Ahmad MK, Islam S, Rahman S, Haque MR, Islam MM (2010) Heavy metals in water, sediment and some fishes of Buriganga River, Bangladesh. Int J Environ Res 4:321–332

    Google Scholar 

  • Ahmed MK, Baki MA, Islam MS, Kundu GK, Sarkar SK, Hossain MM (2015a) Human health risk assessment of heavy metals in tropical fish and shell fish collected from the river Buriganga, Bangladesh. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-015-4813-z

    Google Scholar 

  • Ahmed MK, Shaheen N, Islam MS, Al-Mamun MH, Islam S, Banu CP (2015b) Trace elements in two staple cereals (rice and wheat) and associated health risk implications in Bangladesh. Environ Monit Assess 187:326–336

    Article  Google Scholar 

  • Ahmed MK, Shaheen N, Islam MS, Al-Mamun MH, Islam S, Mohiduzzaman M, Bhattacharjee L (2015c) Dietary intake of trace elements from highly consumed cultured fish (Labeorohita, Pangasius pangasius and Oreochromismossambicus) and human health risk implications in Bangladesh. Chemosphere 128:284–292

    Article  Google Scholar 

  • Ali A, Yan ER, Chen HYH, Chang XS (2016) Stand structural diversity rather than species diversity enhances above-ground carbon storage in secondary subtropical forests in Eastern China. Biogeoscience 13:4627–4635

    Article  Google Scholar 

  • Alves RIS, Sampaio CF, Nadal M, Schuhmacher M, Domingo JL, Seguramuñoz SI (2014) Metal concentration in surface water and sediments from Pardo River, Brazil: human health risks. Environ Res 133:149–155

    Article  Google Scholar 

  • Amdouni R (2009) Behaviour of trace elements during the natural evaporation of seawater: case of solar salt works of Sfax saline (S.E of Tunisia). Global NEST J 11:96–105

    Google Scholar 

  • Andreev G, Simeonov V (1986) Application of cluster analysis to the study of connection between sampling location and composition of seawater samples. Fresen J Anal Chem 325:146–149

    Article  Google Scholar 

  • Ayadi H, Toumi N, Abid O, Medhioub K, Hammami M, Sime-Ngando T, Amblard C, Sargos D (2002) Etude qualitative et quantitative des peuplements phytoplanctoniques et zooplanctoniques dans les bassins de la saline de Sfax, Tunisie. Rev des Sci de l’eau 15:123–135

    Google Scholar 

  • Ayadi R, De Groen WP, Sassi I, Mathlouthi W, Rey H, Aubry O (2015) Banking business models monitor 2015 Europe. Published by the International Research Centre on Cooperative Finance, Montréal. ISBN 978-0-9949169-1-4

    Google Scholar 

  • Azri C, Maalej A, Medhioub K (2000) Etude de la variabilité des constituants de l’aérosol dans la ville de Sfax (Tunisie) Study of aerosol constituents variability in the city of Sfax (Tunisia). Pollut Atmos 165:121–130

    Google Scholar 

  • Azri C, Maalej A, Tlili A, Medhioub K (2002) Caractérisation du niveau de pollution atmosphérique dans la ville de Sfax (Tunisie): influence des sources et des facteurs météorologiques. Tech Sc Méth 1(97):78–92

    Google Scholar 

  • Azri C, Maalej A, Medhioub K, Rosset R (2007) Evolution of atmospheric pollutants in the city of Sfax (Tunisia) (October 1996–June 1997). Atmosfera 20(3):223–246

    Google Scholar 

  • Azri C, Abida H, Medhioub K (2009) Geochemical behavior of the Tunisian background aerosols in sirocco wind circulations. Adv Atmos Sci 26(3):390–402

    Article  Google Scholar 

  • Azri C, Abida H, Medhioub K (2010) Geochemical behaviour of the aerosol sampled in a suburban zone of Sfax City (Tunisia). Int J Environ Pollut 41:51–69

    Article  Google Scholar 

  • Baati H, Guermazi S, Amdouni R, Gharsallah N, Sghir A, Ammar E (2008) Prokaryotic diversity of Tunisian multipond solar saltern. Extremophiles 12:505–518

    Article  Google Scholar 

  • Baati H, Amdouni R, Gharsallah N, Sghir A, Ammar E (2010) Isolation and characterization of moderately halophilic bacteria from Tunisian Solar saltern. Curr Microbiol 60:157–161

    Article  Google Scholar 

  • Baati H, Gargouri D, Jarboui R, Azri C, Ammar E, Medhioub K (2011) Impact of a mixed ‘‘industrial and domestic’’ wastewater effluent on the southern coastal sediments of Sfax (Tunisia) in the Mediterranean Sea. Int J Environ Res 5:691–704

    Google Scholar 

  • Bahloul M (2016) Comportement géochimiques des métaux lourds dans les marais salants de la ville de Sfax et impact des sources d’apport. Ph.D. thesis, University of Sfax

  • Bahloul M, Chabbi I, Sdiri A, Amdouni R, Medhioub K, Azri C (2015a) Spatiotemporal variation of particulate fallout instances in Sfax City, Southern Tunisia: influence of sources and meteorology. Adv Meteorol 471396:11

    Google Scholar 

  • Bahloul M, Chabbi I, Dammak R, Amdouni R, Medhioub K, Azri C (2015b) Geochemical behaviour of PM10 aerosol constituents under the influence of succeeding anticyclonic/cyclonic situations: case of Sfax City, southern Tunisia. Environ Monit Assess 187:1–17

    Article  Google Scholar 

  • Bastami KD, Bagheri H, Haghparast S, Soltani F, Hamzehpoor A, Bastami MD (2012) Geochemical and geo-statistical assessment of selected heavy metals in the surface sediments of the Gorgan Bay, Iran. Mar Pollut Bull 64:2877–2884

    Article  Google Scholar 

  • Besser J, Brumbaugh W, Allert A, Poulton B, Schmitt C (2009) Ecological impacts of lead mining on Ozark streams: toxicity of sediment and pore water. Ecotoxicol Environ Saf 72:516–526

    Article  Google Scholar 

  • Bharti H, Paul SY, Bharti M, Pfeiffer M (2012) Ant species richness, endemicity and functional groups, along an elevational gradient in the Himalayas. Asian Myrmecol 5:79–101

    Google Scholar 

  • Bilyard GR (1987) The value of benthic infauna in marine pollution monitoring studies. Mar Pollut Bull 18:581–599

    Article  Google Scholar 

  • Birch GF (2003) A scheme for assessing human impacts on coastal aquatic environments using sediments. In: Woodcoffe CD, Furness RA (eds) Coastal GIS: an integrated approach to Australian coastal issues. Wollongong University Papers in Center for Maritime Policy, 14, Australia

  • Birch GF, Taylor SE, Matthai C (2001) Small scale spatial and temporal variance in the concentration of heavy metals in aquatic sediments: a review and some new concepts. Environ Pollut 113:357–372

    Article  Google Scholar 

  • Blomqvist S, Larsson U, Borg H (1992) Heavy metal decrease in the sediments of a Baltic Bay following tertiary sewage treatment. Mar Pollut Bull 24:258–266

    Article  Google Scholar 

  • Bradl H (2002) Heavy metals in the environment: origin, interaction and remediation. Academic Press, London

    Google Scholar 

  • Brady JP, Ayoko GA, Martens WN, Goonetilleke A (2014) Enrichment, distribution and sources of heavy metals in the sediments of deception Bay, Queensland, Australia. Mar Pollut Bull 81:248–255

    Article  Google Scholar 

  • Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom Estuaries: a review. Environ Pollut 76:89–131

    Article  Google Scholar 

  • Burton E, Phillips I, Hawker D (2004) Trace metals and nutrients in bottom sediments of the Southport Broadwater, Australia. Mar Pollut Bull 48:378–384

    Article  Google Scholar 

  • Callender E (2005) Heavy metals in the environment-historical trends. Treatise Geochem 9:67–105

    Google Scholar 

  • Callender E, Rice KC (2000) The urban environmental gradient: anthropogenic influences on the spatial and temporal distributions of lead and zinc in sediments. Environ Sci Technol 34:232–238

    Article  Google Scholar 

  • Castillo MLA, Trujillo IS, Alonso EV, Torres AGD, Pavón JMC (2013) Bioavailability of heavy metals in water and sediments from a typical Mediterranean Bay (Málaga Bay, Region of Andalucía, Southern Spain). Mar Pollut Bull 76:427–434

    Article  Google Scholar 

  • Chen CW, Kao CM, Chen CF, Dong CD (2007) Distribution and accumulation of heavy metals in the sediments of Kaohsiung harbor, Taiwan. Chemosphere 66:1431–1440

    Article  Google Scholar 

  • Choi Y, Cho YM, Gala WR, Luthy RG (2013) Measurement and modeling of activated carbon performance for the sequestration of parent- and alkylated- polycyclic aromatic hydrocarbons in petroleum-impacted sediments. Environ Sci Technol 47:1024–1032

    Article  Google Scholar 

  • Cortes Toro E, Parr RM, Clements SA (1990) Biological and environmental reference materials for trace elements, nuclides and organic micro contaminants a survey. IAEA (International Atomic Energy Agency), Section of Nutritional and Health-Related Environmental Studies, Vienna, Austria

  • Costa RS, Molozzi J, Hepp LU, da Costa DFS, da Silva PRN, Rocha RM, de Barbosa JHL (2015) Influence of ecological filters on phytoplankton communities in semi-arid solar saltern environments. Acta Limnol Bras 27(1):39–50

    Article  Google Scholar 

  • Dammak DF, Zarai Z, Najah S, Abdennabi R, Belbahri L, Rateb ME, Mejdoub H, Maalej S (2017) Antagonistic properties of some halophilic thermoactimycetes isolated from superficial sediment of a solar saltern and production of cyclic antimicrobial peptides by the novel isolate paludifilum halophilium. Hindaw Biomed Res Intern. https://doi.org/10.1155/2017/1205258 (Article ID 1205258)

    Google Scholar 

  • Daskalakis DK, O’Connor TP (1995) Normalization and elemental sediment contamination in the coastal United States. Environ Sci Tech 29:470–477

    Article  Google Scholar 

  • Davis JS (1978) Biological communities in ambient enriched salina. Aquat Bot 4:29–42

    Article  Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology. Wiley, New York

    Google Scholar 

  • Drira Z, Kmiha-Megdiche S, Sahnoun H, Hammami A, Allouche N, Tedetti M, Ayadi H (2016) Assessment of anthropogenic inputs in the surface waters of the southern coastal area of Sfax during Spring (Tunisia, Southern Mediterranean Sea). Mar Pollut Bull 104(1–2):355–363

    Article  Google Scholar 

  • Elloumi J, Carrias JF, Ayadi H, Sime-Ngando T, Boukhris M, Bouain A (2006) Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia. Estuar Coast Mar Sci 67:21–29

    Article  Google Scholar 

  • Elloumi J, Guermazi W, Ayadi H, Bouaïn A, Aleya L (2008) Abundance and biomass of prokaryotic and eukaryotic microorganisms coupled with environmental factors in an arid multi-pond solar saltern (Sfax, Tunisia). J Mar Biol Assoc UK 89:243–253

    Article  Google Scholar 

  • Elloumi J, Guermazi W, Ayadi H, Bouaïn A, Aleya L (2009) Abundance and biomass of prokaryotic and eukaryotic microorganisms coupled with environmental factors in an arid multi-pond solar saltern (Sfax, Tunisia). J Mar Biol Assoc UK 89:243–253

    Article  Google Scholar 

  • El-Sorogy SA, Attiah A (2015) Assessment of metal contamination in coastal sediments, seawaters and bivalves of the Mediterranean Sea coast, Egypt. Mar Pollut Bull 101:867–871

    Article  Google Scholar 

  • Ergin M, Saydam C, Bastürk Ö, Erdem E, Yörük R (1991) Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmir Bay) of the Northeastern Sea of Marmara. Chem Geol 91:269–285

    Article  Google Scholar 

  • Feng H, Jiang H, Gao W, Weinstein MP, Zhang Q, Zhang W, Yu L, Yuan D, Tao J (2011) Metal contamination in sediments of the western Bohai Bay and adjacent estuaries, China. J Environ Manag 92:1185–1197

    Article  Google Scholar 

  • Förstner U (1989) Contaminated sediments. In: Bhattacharji S, Friedman GM, Neugebauer HJ, Seilacher A (eds) Lecture notes in earth sciences, vol 21. Springer, Berlin

    Google Scholar 

  • Gamelin FX, Baquet G, Berthoin S, Thevenet D, Nourry C, Nottin S, Bosquet L (2009) Effect of high intensity intermittent training on heart rate variability in prepubescent children. Eur J Appl Physiol 105:731–738

    Article  Google Scholar 

  • Gao X, Chen CTA (2012) Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Resour 46:1901–1911

    Google Scholar 

  • Gao XL, Chen CTA, Wang G, Xue QZ, Tang C, Chen SY (2010) Environmental status of Daya Bay surface sediments inferred from a sequential extraction technique. Estuar Coast Shelf Sci 86:369–378

    Article  Google Scholar 

  • Gargouri D (2009) Etude morphologiue sédimentologiue et géochimique de la frange littorale de Sfax à la Skhira: apport à l’aménagement côtier. Thèse de Doctorat. Université de Sfax

  • Gargouri D, Azri C, Serbaji MM, Jedoui Y, Montacer M (2011) Heavy metal concentrations in the surface marine sediments of Sfax Coast, Tunisia. Environ Monit Assess 175:519–530

    Article  Google Scholar 

  • Gargouri D, Bahloul M, Azri C (2015) Sediment quality and potential toxicity assessment in two open/semiclosed mediterranean sea areas: a case study of Sfax Coast (Tunisia). Water Environ Res 87(5):470–479

    Article  Google Scholar 

  • Ghannem N, Azri C, Sarbeji MM, Yaich C (2010) Spatial distribution of heavy metals in the coastal zone of ‘‘Sfax-Kerkennah’’ Plateau, Tunisia. Environ Prog Sustain Energy 30:221–233

    Google Scholar 

  • Ghannem N, Gargouri D, Sarbeji MM, Yaich C, Azri C (2014) Metal contamination of surface sediments of the Sfax-Chebba coastal line, Tunisia. Environ Earth Sci 72:3419–3427

    Article  Google Scholar 

  • Guermazi W, Elloumi J, Ayadi H, Bouaïn A, Aleya L (2008) Coupling changes in fatty acid and protein composition of Artemia salina with environmental factors in the Sfax solar saltern (Tunisia). Aquat Living Resour 21:63–73

    Article  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. J Water Res 14:975–1001

    Article  Google Scholar 

  • Hofer C, Schendel D (1998) Strategy formulation: analytical concepts. West Publishing Company, Eagan

    Google Scholar 

  • Horne MT, Finley NJ, Sprenger MD (1999) Polychlorinated biphenyl and mercury associated alterations on benthic invertebrate community structure in a contaminated salt marsh in southeast Georgia. Arch Environ Contam Toxicol 37:317–325

    Article  Google Scholar 

  • Hosono T, Su CC, Delinom R, Umezawa Y, Toyota T, Kaneko S, Taniguchi M (2011) Decline in heavy metal contamination in marine sediments in Jakarta Bay, Indonesia due to increasing environmental regulations. Estuar Coast Shelf Sci 92:297–306

    Article  Google Scholar 

  • Hwang HM, Scott Car R, Cherr GN, Green PG, Grosholz ED, Judah L, Morgan SG, Ogle S, Rashbrook VK, Rose WI, The SJ, Vines CA, Anderson SL (2013) Sediment quality assessment in tidal salt marshes in northern California, USA: an evaluation of multiple lines of evidence approach. Sci Total Environ 454–455:189–198

    Article  Google Scholar 

  • Hwang DW, Kim SG, Choi M, Lee IS, Kim SS, Choi HG (2016) Monitoring of trace metals in coastal sediments around Korean Peninsula. Mar Pollut Bull 102:230–239

    Article  Google Scholar 

  • Illou S (1999) Impact des rejets telluriques d’origines domestiques et industrielles sur les environnements côtiers: cas du littoral nord de la ville de Sfax (Tunisie). Ph.D. thesis, Faculté des Sciences de Tunis

  • Islam MS, Ahmed MK, Habibullah-Al-Mamun M, Hoque MF (2015) Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environ Earth Sci 73:1837–1848

    Article  Google Scholar 

  • Jaishnkar M, Tseten T, Anbalagan N, Mathiew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72. https://doi.org/10.2478/intox-2014-0009

    Google Scholar 

  • Johnson MD (1991) Habita relationships of migratory birds wintering in Jamaica, West Indies. Ph.D. Thesis, Tulane University

  • Khan MZH, Hasan MR, Aktar S, Fatema K (2017) Distribution of heavy metals in surface sediments of the bay of Bengal coast. J Toxicol. https://doi.org/10.1155/2017/9235764 (Article ID 9235764)

    Google Scholar 

  • Kharroubi A, Gzam M, Jedoudi Y (2012) Anthropogenic and natural effects on the water and sediments qualities of costal lagoons: case of the Boughrara Lagoon (Southeast Tunisia). Environ Earth Sci 67:1061–1067

    Article  Google Scholar 

  • Khemakhem H, Elloumi J, Moussa M, Aleya L, Ayadi H (2010) The concept of ecological succession applied to phytoplankton over four consecutive years in five ponds featuring a salinity gradient. Estuar Coast Shelf Sci 88:33–44

    Article  Google Scholar 

  • Klapow LA, Lewis RH (1979) Analysis of toxicity data for California marine water quality standards. J Water Pollut Control Fed 51:2051–2070

    Google Scholar 

  • Ladhar C, Ayadi H, Denis F, Tastard E, Sellami I (2014) The effect of environmental on the fatty acid composition of copepods and Artemia in the Sfax solar saltern (Tunisia). Biochem Syst Ecol 56:237–245

    Article  Google Scholar 

  • Lin Y, Chang-Chien P, Chiang P, Chen W, Lin Y (2013) Multivariate analysis of heavy metal contaminations in seawater and sediments from a heavily industrialized harbor in Southern Taiwan. Mar Pollut Bull 76:266–275

    Article  Google Scholar 

  • Long ER, MacDonald DD (1998) Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Human Ecol Risk Assess 4(5):1019–1039

    Article  Google Scholar 

  • Long ER, Ingersoll CG, MacDonald DD, Smith S, Calder F (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manage 19:81–97

    Article  Google Scholar 

  • Long AR, Yang M, Kaiser K, Shepherd D (1998) Isolation and characterisation of smallminded, a Drosophila gene encoding a new member of the Cdc48p/VCP subfamily of AAA proteins. Gene 208(2):191–199

    Article  Google Scholar 

  • Long ER, MacDonald DD, Severn CG, Hong BC (2000) Classifying probabilities of acute toxicity in marine sediments with empirically derived sediment quality guidelines. Environ Toxicol 19:2598–2601

    Article  Google Scholar 

  • Long ER, Ingersoll CG, MacDonald DD (2006) Calculation and uses of mean sediment quality guideline quotients: a critical review. Environ Sci Technol 40:1726–1736

    Article  Google Scholar 

  • Louati A, Elleuch B, Kallel A, Saliot A, Dagaut J, Oudot J (2001) Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea. Mar Pollut Bull 42:445–452

    Article  Google Scholar 

  • Luoma NS, Dagovitz R, Axtmann E (1990) Temporally intensive study of trace metals in sediments and bivalves from a large river-estuarine system: suisun bay/delta in San Francisco bay. Sci Total Environ 97(98):685–712

    Article  Google Scholar 

  • Lwanga MS, Kansiime F, Denny P, Scullion J (2003) Heavy metals in Lake George, Uganda with relation to metal concentrations in tissues of common fish species. Hydrobiologia 499(1–3):83–93

    Article  Google Scholar 

  • Maanan M, Saddik M, Maanan M, Chaibi M, Assobhei O, Zourarah B (2015) Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecol Indic 48:616–626

    Article  Google Scholar 

  • Macdonald DD, Carr RS, Calder FD, Long ER, Ingersoll CG (1996) Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5(4):253–278

    Article  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  Google Scholar 

  • Marchand C, Lalliet VE, Baltzer F, Alberic P, Cossa D, Baillif P (2006) Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Mar Chem 98:1–17

    Article  Google Scholar 

  • Martin JM, Whitfield M (1983) The significance of the river input of chemical elements to the ocean. In: Wong CS, Boyle E, Bruland KW, Goldberg ED (eds) Trace metals in seawater. Plenum, New York

    Google Scholar 

  • Martin JAR, Arana CD, Ramos-Miras JJ, Gil C, Boluda R (2015) Impact of 70 years urban growth associated with heavy metal pollution. Environ Pollut 196:156–163

    Article  Google Scholar 

  • Medici L, Bellanova J, Belviso C, Cavalcante F, Lettino A, Ragone PP, Fiore S (2011) Trace metals speciation in sediments of the Basento River (Italy). Appl Clay Sci 53:414–442

    Article  Google Scholar 

  • Mezghani-Chaari S, Hamza A, Hamza-Chaffai A (2011) Mercury contamination in human hair and some marine species from Sfax coasts of Tunisia: levels and risk assessment. Environ Monit Assess 180(1–4):477–487

    Article  Google Scholar 

  • Mir MA, Mohammad LA, Md SI, Md ZR (2016) Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ Nanotechol Monit Manag 5:27–35

    Google Scholar 

  • Mkawar S, Azri C, Kamoun F, Montacer M (2007) Impact sur les biophases marines des rejets anthropiques notamment des métaux lourds rejetés sur le littoral nord de la ville de Sfax (Tunisie). Tech Sc Méth 10:71–85

    Google Scholar 

  • Morillo J, Usero J, Gracia I (2004) Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere 55:431–442

    Article  Google Scholar 

  • Müller G (1979) Heavy metals in the sediment of the Rhine-Changes seity. Umsch Wiss Tech 79:778–783

    Google Scholar 

  • Müller G (1981) Die Schwermetallbelastung der Sedimenten des Neckars und Seiner Nebenflüsse. Chemiker-Zeitung 6:157–164

  • Olivares-Rieumont S, de la Rosa D, Lima L, Graham DW, Alessandro KD, Borroto J, Martinez F, Sánchez J (2005) Assessment of heavy metal levels in Almendares River sediments-Havana City, Cuba. Water Res 39:3945–3953

    Article  Google Scholar 

  • Omar E, Abdelali T, Boualem R, Abdellah G, Poulet JB (2013) Study of sediment dynamics in the Wadi Bellah watershed (Algeria). Hydrol Sci J 58(1):224–236

    Article  Google Scholar 

  • Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1:1–14

    Article  Google Scholar 

  • Orson RA, Simpson RL, Good RE (1992) A mechanism for the accumulation and retention of heavy metals in tidal freshwater marshes of the upper Delaware River estuary. Estuar Coast Shelf Sci 34:171–186

    Article  Google Scholar 

  • Pereira F, Kerkar S, Krishnan KP (2013) Bacterial response to dynamic metal concentrations in the surface sediments of a solar saltern (Goa, India). Environ Monit Assess 185:3625–3636

    Article  Google Scholar 

  • Perin G, Craboledda L, Lucchese M, Cirillo R, Dotta L, Zanetta ML, Oro AA (1985) Heavy metal speciation in the sediments of northern Adriatic sea. A new approach for environmental toxicity determination. In: Lakkas TD (ed) Heavy metals in the environment, vol 2. Edinburgh, CEP Consultants

    Google Scholar 

  • Rainbow PS (2007) Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ Int 33:576–582

    Article  Google Scholar 

  • Reinfelder JR, Fisher NS, Luoma SN, Nichols JW, Wang WX (1998) Trace element trophic transfer in aquatic organisms: a critique of the kinetic model approach. Sci Total Environ 219:117–135

    Article  Google Scholar 

  • Rekik A, Drira Z, Guermazi W, Elloumi J, Maalej S, Aleya L, Ayadi H (2012) Impacts of an uncontrolled phosphogypsum dumpsite on summer distribution of phytoplankton, copepods and ciliates in relation to abiotic variables along the near-shore of the Southwestern Mediterranean coast. Mar Pollut Bull 64:336–346

    Article  Google Scholar 

  • Rekik A, Denis M, Aleya L, Maalej S, Ayadi H (2013) Spring plankton community structure and distribution in the north and south coasts of Sfax (Tunisia) after north coast restoration. Mar Pollut Bull 67:82–93

    Article  Google Scholar 

  • Rekik A, Ben Salem Z, Ayadi H, Elloumi J (2016) Species composition and spring ciliates variability on the south coast of Sfax (Eastern Mediterranean Sea). J Appl Environ Biol Sci 6(3):57–71

    Google Scholar 

  • Rekik A, Elloumi J, Drira Z, Maalej S, Ayadi H (2017) Coupling of phytoplankton and ciliate biomasses to environmental factors along the north coast of Sfax (Tunisia, Eastern Mediterranean Sea). Water Resour 44(6):849–863

    Article  Google Scholar 

  • Rohrbough WG (1986) Reagent chemicals, American chemical society specifications, 7th edn. American Chemical Society, Washington

    Google Scholar 

  • Salomons W, Förstner U (1980) Trace metal analysis on polluted sediments, Part I : Assessment of sources and Inensities. Env Techno 1:494–517

    Google Scholar 

  • Serbaji MM (2000) Utilisation d’un S.I.G. multi-sources pour la compréhension et la gestion intégrée de l’écosystème côtier de la région de Sfax (Tunisie). Ph.D. thesis, University of Tunis II

  • Serbaji MM, Azri C, Medhioub K (2012) Anthropogenic contributions to heavy metal distributions in the surface and sub-surface sediments of the Northern Coast of Sfax, Tunisia. Int J Environ Res 6:613–626

    Google Scholar 

  • Shallari S, Schwartz C, Hasko A, Morel JL (1998) Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ 19209:133–142 [PubMed: 9514035]

    Article  Google Scholar 

  • Siddiqui AS, Mumtaz M, Zaigham NA, Mallick KA, Saied S, Zahir E, Khwaja HA (2009) Heavy metal toxicity levels in the coastal sediments of the Arabian Sea along the urban Karachi (Pakistan) region. Mar Pollut Bull 58:1406–1414

    Article  Google Scholar 

  • Siddiqui MS, Thodey K, Trenchard I, Smolke DC (2012) Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 12:144–170

    Article  Google Scholar 

  • Simeonov V, Massart DL, Andreev G, Tsakovski S (2000) Assessment of metal pollution based on multivariate statistical modeling of ‘hot spot’ sediments from the Black Sea. Chemosphere 41(9):1411–1417

    Article  Google Scholar 

  • Singh RP, Huerta-Espino J, William HM (2005) Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turk J Agric For 29:121–127

    Google Scholar 

  • Soliman NF, Nasr SM, Okbah MA (2015) Potential ecological risk of heavy metals in sediments from the Mediterranean coast, Egypt. J Environ Heal Sci Eng 13:70–82

    Article  Google Scholar 

  • STATIT-CF (1987) Services des études statistiques de l’Institut Technique des Céréales et Fourrages (I.T.C.F.), Boigneville

  • Strorelli MM, Strorelli A, Marcotrigiano GO (2001) Heavy metals in the aquatic environment of the Southern Adriatic Sea, Italy: macroalgae, sediments and benthic species. Environ Int 26:505–509

    Article  Google Scholar 

  • Survey A, Cortes Toro E, Parr RM, Clements SA (1990) Biological and environmental reference materials for trace elements, nuclides and organic microcontaminants. IAEA/RL/128 (Rev. 1), Vienna

  • Suthar S, Arvind KN, Chabukdhara M, Gupta SK (2009) Assessment of metals in water and sediments of Hindon River, India: impact of industrial and urban discharges. J Hazard Mater 178:1088–1095

    Article  Google Scholar 

  • Szefer P, Szefer K, Glasby GP, Pempkowiak J, Kaliszan R (1996) Heavy metal pollution in superficial sediments from the southern Baltic Sea of Poland. J Environ Sci Health 31A:2723–2754

    Google Scholar 

  • Tavakoly Sany SB, Hashim R, Rezayi M, Salleh A, Safari O (2013) A review of strategies to monitor water and sediment quality for a sustainability assessment of marine environment. Environ Sci Pollut Res 21:813–833

    Article  Google Scholar 

  • Tayibi H, Choura M, Lopez FA, Alguacil FJ, Lopez-Delgado A (2009) Environmental impact and management of phosphogypsum. J Environ Manag 90:2377–2386

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patiolla AK, Sutton JD (2012) Heavy metals Toxicity and the Environment. NIH Public Access 101:133–164

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  Google Scholar 

  • Toumi N, Ayadi H, Abid O, Carrias JF, Sime-Ngando T, Boukhris M, Bouaîn A (2005) Zooplankton distribution in four ponds of different salinity: a seasonal study in the solar salterns of Sfax (Tunisia). Hydrobiologia 534:1–9

    Article  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192

    Article  Google Scholar 

  • Us Saher N, Siddiqui AS (2016) Comparison of heavy metal contamination during the last decade along the coastal sediment of Pakistan: multiple pollution indices approach. Mar Pollut Bull 105:403–410

    Article  Google Scholar 

  • Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364

    Article  Google Scholar 

  • Verkleji JAS (1993) The effects of heavy metals stress on higher plants and their use as biomonitors. In: Markert B (ed) Plant as bioindicators: indicators of heavy metals in the terrestrial environment. VCH, New York

    Google Scholar 

  • Voigt KR (2004) Concentrations of mercury (Hg) and cadmium (Cd), and the condition of some coastal Baltic fishes. Environ Fenn 21:1–21

    Google Scholar 

  • Wang WX, Rainbow PS (2008) Comparative approaches to understand metal bioaccumulation in aquatic animals. Comp Biochem Physiol C Toxicol Pharmacol 148:315–323

    Article  Google Scholar 

  • Wang Y, Gross ML, Taylor JS (2001) Use of a combined enzymatic digestion/ESI mass spectrometry assay to study the effect of TATA-binding protein on photoproduct formation in a TATA box. Biochemistry 40(39):11785–11793

    Article  Google Scholar 

  • Wang Y, Hu J, Xiong K, Huang X, Duan S (2012) Distribution of heavy metals in core sediments from Baihua Lake. Proc Environ Sci 16:51–58

    Article  Google Scholar 

  • Wang H, Wang J, Liu R, Yu W, Shen Z (2015a) Spatial variation, environmental risk and biological hazard assessment of heavy metals in surface sediments of the Yangtze River estuary. Mar Pollut Bull 93:250–258

    Article  Google Scholar 

  • Wang Y, Yang L, Kong L, Liuc E, Wang L, Zhu J (2015b) Spatial distribution. Ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. Catena 125:200–205

    Article  Google Scholar 

  • WDOE (1995) Sediment Management Standards; Washington State Department of Ecology WAC 173-204-320. Washington State Legislature, Olympia

    Google Scholar 

  • Yi Y, Yang Z, Zhang S (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze river basin. Environ Pollut 159:2575–2585

    Article  Google Scholar 

  • Zaaboub N, Oueslati W, Helali MA, Saadi A, Huertas FJ, Galindo AL (2014) Trace elements in different marine sediment fractions of the Gulf of Tunis (Central Mediterranean Sea). Chem Spec Bioavailab 26:1–12

    Article  Google Scholar 

  • Zhang J, Liu C (2002) Riverine composition and estuarine geochemistry of particulate metals in China: weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54:1051–1070

    Article  Google Scholar 

  • Zhang J, Liu SM, Huang WW (1993) Atmospheric input of particulate heavy metals to the yellow sea. Ambio 22:196–199

    Google Scholar 

  • Zhang P, Song J, Liu Z, Zheng G, Zhang N, He Z (2007) PCBs and its coupling with eco-environments in Southern Yellow Sea surface sediments. Mar Pollut Bull 54:1105–1115

    Article  Google Scholar 

  • Zhang W, Feng H, Chang J, Qu J, Xie H, Yu L (2009) Heavy metal contamination in surface sediments of Yangtze river intertidal zone: an assessment from different indexes. Environ Pollut 157:1533–1543

    Article  Google Scholar 

  • Zhang H, Yinghui J, Tao Y, Min W, Guangxun S, Mingjun D (2016) Heavy metal concentrations and risk assessment of sediments and surface water of Gan River, China. Pol J Environ Stud 25(4):1529–1540

    Article  Google Scholar 

  • Zhou F, Guo H, Hao Z (2007) Spatial distribution of heavy metals in Hong Kong’s marine sediments and their human impacts: a GIS based chemometric approach. Mar Pollut Bull 54:1372–1384

    Article  Google Scholar 

  • Zhu H, Yuan X, Zeng G, Jiang M, Liang J, Zhang C, Yin J, Huang H, Liu Z, Jiang H (2012) Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Trans Nonferrous Met Soc China 22:1470–1477

    Article  Google Scholar 

Download references

Acknowledgements

Principal author as well as co-authors would express their thanks, on the one hand, to Mr Bourmech F., professor of English language from Letter Faculty (University of Sfax) for revising English language of this work and, on the other hand, to the research unit personal for providing all needs to accomplish scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moez Bahloul.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Appendix

Appendix

Methods for Chemical Analysis of Water and Wastes; U.S. Environmental Protection Agency. Office of Research and Development. Environmental Monitoring and Support Laboratory. ORD Publication Offices of Center for Environmental Research Information: Cincinnati, OH, 1983; EPA-600/4-79-020.

Annual Book of ASTM Standards, Vol. 11.01; “Standard Specification for Reagent Water”; ASTM: Philadelphia, PA, 1985; D1193-77.

EPA (2007) U.S. Environmental Protection Agency, EPA method 7000B: Flame Atomic Absorption Spectrophotometry, Rev 2, Febuary 2007, (http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/7000b.pdf).

U.S. Environmental Protection Agency. 1991. “Compendium of ERT Surface Water and Sediment Sampling Procedures, Standard Operating Procedures.” EPA/540/P-91/005.

ASTM (American Society for Testing and Materials standards) D4343-84 (1998) Standard Practice for Collecting Benthic Macroinvertebrates with Ekman Grab Sampler (Withdrawn 2003).

WHO/FAO/IAEA. World Health Organization. Switzerland: Geneva; (1996). Trace Elements in Human Nutrition and Health.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahloul, M., Baati, H., Amdouni, R. et al. Assessment of heavy metals contamination and their potential toxicity in the surface sediments of Sfax Solar Saltern, Tunisia. Environ Earth Sci 77, 27 (2018). https://doi.org/10.1007/s12665-018-7227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7227-7

Keywords

Navigation