Skip to main content

Advertisement

Log in

Hydrological systems from the Antarctic Peninsula under climate change: James Ross archipelago as study case

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Hydrological systems of the ice-free areas of the James Ross archipelago (NE Antarctic Peninsula) provide a unique opportunity for studying recent environmental changes associated with the current Global Warming. Geochemical, hydrological, sedimentological, and magnetic studies were carried out on different lake systems and ephemeral ponds from post-Holocene periglacial environments to characterize their natural variability. Significant differences between the lakes were observed based on physicochemical analyses, and can be attributed to several characteristics and processes taking place (geochemical, diagenetic, biological, etc.) in individual lake catchments. Seymour-Marambio Island’s lakes exhibit high total dissolved solids (~3.300 mg L−1) due to the high rate of evaporation in the region, whereas trace elements show differences in the lithological source. Lakes from Vega and James Ross islands are comparatively diluted, with the highest pH values up to 10.2. Within Vega Island, trace elements discriminate lakes into sectors which show statistical differences due to variations in lithological sources. Dissolved sources can be divided according to their kinetics into: high-rate processes which occur during summer months (evaporation, salt precipitation, atmospheric precipitation, melting processes) and low-rate processes (mineral weathering, giving a long-term signature). The present multidisciplinary study contributes to a better understanding of Antarctic lake systems, and can be used as a baseline dataset for further studies investigating the impact of recent climate changes on the biological and geochemical characteristics of these pristine ecosystems in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aiuppa A, Federico C, Allard P, Gurrieri S, Valenza M (2005) Trace metal modeling of groundwater-gas-rock interactions in a volcanic aquifer: Mount Vesuvius, Southern Italy. Chem Geol 216:289–311

    Article  Google Scholar 

  • Brantley SL, Goldhaber MB, Ragnarsdottir KV (2007) Crossing disciplines and scales to understand the critical zone. Elements 3(5):307–314

    Article  Google Scholar 

  • Carrivick JL, Davies BJ, Glasser NF, Nývlt D (2012) Late Holocene changes in character and behaviour of land-terminating glaciers on James Ross Island, Antarctica. J Glaciol 58:1176–1190

    Article  Google Scholar 

  • Chaparro MAE (2006) Estudio de Parámetros Magnéticos de Distintos Ambientes Relativamente Contaminados en Argentina y Antártida. Ed. Geofísica UNAM, Monografía No. 7, p 107

  • Chaparro MAE, Nuñez H, Lirio JM, Gogorza CGS, Sinito AM (2007) Magnetic screening and heavy metal pollution studies in soils from Marambio station, Antarctica. Antarct Sci 19(3):379–393

    Article  Google Scholar 

  • Chaparro MAE, Gargiulo JD, Irurzun MA, Chaparro MAE, Lecomte KL, Böhnel HN, Córdoba FE, Vignoni PA, Manograsso Czalbowski NT, Lirio JM, Nowaczyk NR, Sinito AM (2014) El uso de parámetros magnéticos en estudios paleolimnológicos en Antártida “Magnetic parameters in paleolimnological studies in Antarctica”. Latin Am J Sedimentol Basin Anal 21(2):77–96

    Google Scholar 

  • Claridge CGC, Campbell IB, Powel HKJ, Amim ZH, Balks MR (1995) Heavy metal contamination in some soils of the McMurdo Sound region, Antartica. Antarct Sci 7:9–14

    Article  Google Scholar 

  • Engel Z, Nývlt D, Láska K (2012) Ice thickness, areal and volumetric changes of Davies Dome and Whisky Glacier in 1979–2006 (James Ross Island, Antarctic Peninsula). J Glaciol 58:904–914

    Article  Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of Pollen Analysis. Faegri K, Kaland PE, Krzywinski K (ed) 4th edn. Wiley, New York

  • Gaillardet J, Viers J, Dupré B (2003) Trace elements in river waters. In: Drever JI (ed) Surface and ground water, weathering, and soils. Elsevier, Amsterdam

    Google Scholar 

  • Hawes I, Howard-Williams C, Sorrell B (2014) Decadal timescale variability in ecosystem properties in the ponds of the McMurdo Ice Shelf, southern Victoria Land, Antarctica. Antarct Sci 26(03):219–230

    Article  Google Scholar 

  • Healy M, Webster-Brown JG, Brown KL, Lane V (2006) Chemistry and stratification of Antarctic meltwater ponds II: inland ponds of the McMurdo Dry Valleys, Victoria Land. Antarct Sci 18:525–533

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolim 25:101–110

    Article  Google Scholar 

  • Hodgson DA, Roberts SJ, Smith JA, Verleyen E, Sterken M, Labarque M, Sabbe K, Vyverman W, Allen CS, Leng MJ, Bryant C (2013) Late Quaternary environmental changes in Marguerite Bay, Antarctic Peninsula, inferred from lake sediments and raised beaches. Quatern Sci Rev 68:216–236

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Husson F, Josse J, Le S, Mazet J (2007) FactoMineR: factor analysis and data mining with R. R package version 1.04. http://CRAN.R-project.org/package=FactoMineR

  • Ingólfsson Ó, Hjort C, Björck S, Smith RIL (1992) Late Pleistocene and Holocene glacial history of James Ross Island, Antarctic Peninsula. Boreas 21:209–222

    Article  Google Scholar 

  • Ingólfsson Ó, Hjort C, Berkman P, Björck S, Colhoun E, Goodwin ID, Hall B, Hirakawa K, Melles M, Möller P, Prentice M (1998) Antarctic glacial history since the Last Glacial Maximum: an overview of the record on land. Antarct Sci 10:326–344

    Article  Google Scholar 

  • King JC, Turner J, Marshall GJ, Connolley WM, Lachlan-Cope TA (2004). In: Domack E, Leventer A, Burnett A, Bindschadler R, Convey P and Kirby M (eds) Antarctic Peninsula climate variability: historical and paleoenvironmental perspectives. American Geophysical Union, Antarctic Research Series 79, Washington D.C, p 7–30

  • Kopalová K, Elster J, Komárek J, Veselá J, Nedbalová L, Van de Vijver B (2012) Benthic diatoms (Bacillariophyta) from seepages and streams on James Ross Island (NW Weddell Sea, Antarctica). Plant Ecol Evol 145(2):190–208

    Article  Google Scholar 

  • Kopalová K, Nedbalová L, Nývlt D, Elster J, Van de Vijver B (2013) Diversity, ekology and biogeography of the freshwater diatom communities from Ulu Peninsula (James Ross Island, NE Antarctic Peninsula). Polar Biol 36(7):933–948

    Article  Google Scholar 

  • Kopalová K, Ochyra R, Nedbalová L, Van de Vijver B (2014) Moss-inhabiting diatoms from two contrasting Maritime Antarctic islands. Plant Ecol Evol 147(1):67–84

    Article  Google Scholar 

  • Laity J (2008) Deserts and desert environments. Wiley-Blackwell, Chichester

    Google Scholar 

  • Lecomte KL (2006) Control Geomorfológico en la Geoquímica de los ríos de Montaña, Sierras Pampeanas, Provincia de Córdoba, Argentina. Doctoral Thesis. CIGeS. Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba, Argentina

  • Lecomte KL, Milana JP, Formica SM, Depetris PJ (2008) Hydrochemical appraisal of ice- and rock-glacier meltwater in the hyperarid Agua Negra drainage basin, Andes of Argentina. Hydrol Process 22:2180–2195

    Article  Google Scholar 

  • Libera V (1993) Osservazioni fisico-limnologiche su un lago Antartico nell’ambito di una ricognizione dei corpi d’acqua dolce nell’area di Baia Terra Nova. In: Atti del Seminario su "Il ruolo delle aree remote nello studio dei cambiamenti globali". Roma, CNR, pp 133–139

  • Lyons WB, Welch KA, Gardner CB, Jaros C, Moorhead DL, Knoepfle JL, Doran PT (2012) The geochemistry of upland ponds, Taylor Valley, Antarctica. Antarct Sci 24(1):3–14. doi:10.1017/S0954102011000617

    Article  Google Scholar 

  • Marenssi SA, Net L, Santillana SN (2002) Provenance, depositional, and paleogeographic control on sandstone composition in an incised valley system: the Eocene La Meseta Formation, Seymour Island, Antarctica. Sediment Geol 150:301–321

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst. doi:10.1029/2000GC000109

    Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604. doi:10.1029/2005GL024042

    Google Scholar 

  • Meybeck M (2005) Global occurrence of major elements in rivers. In: Drever JI (ed) Surface and ground water, weathering, and soils, vol 5. Elsevier, Amsterdam, pp 207–223

    Google Scholar 

  • Mosley LM, Daly R, Palmer D, Yeates P, Dallimore C, Biswas T, Simpson S (2015) Predictive modeling of pH and dissolved metal concentrations and speciation following mixing of acid drainage with river water. Appl Geochem 59:1–10

    Article  Google Scholar 

  • Mulvaney R, Abram NJ, Hindmarsh RCA, Arrowsmith C, Fleet L, Triest J, Sime LC, Alemany O, Foord S (2012) Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature 489:141–144. doi:10.1038/nature11391

    Article  Google Scholar 

  • Nedbalová L, Nývlt D, Kopáček J, Šobr M, Elster J (2013) Freshwater lakes of Ulu Peninsula (James Ross Island, NE Antarctic Peninsula): origin, geomorphology and physical and chemical limnology. Antarct Sci 25:358–372

    Article  Google Scholar 

  • Parkhurst DL (1995) Users’s Guide to PHREEQC–a computer program for speciation reaction-path, advective-transport, and inverse geochemical calculations. Water Resources Investigation Report 95-4227, US Geological Survey, Lakewood, Colorado

  • Pasquini AI, Lecomte KL, Depetris PJ (2004) Geoquímica de ríos de montaña en las Sierras Pampeanas: II. El río Los Reartes, Sierra de Comechingones, provincia de Córdoba. Revista de la Asociación Geológica Argentina 59(1):129–140

    Google Scholar 

  • Patchett PJ, White WM, Feldmann H, Kielinczuk S, Hofmann AW (1984) Earth planet. Sci Lett 69:365–378

    Google Scholar 

  • Peters C, Dekkers M (2003) Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys Chem Earth 28:659–667

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Am Geophys Union Trans 25:914–923

    Article  Google Scholar 

  • Quayle WC, Peck LS, Peat H, Ellis-Evans JC, Harrigan PR (2002) Extreme responses to climate change in Antarctic lakes. Science 295:645

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Santos IR, Silva-Filho EV, Schaefer CE, Albuquerque-Filho MR, Campos LS (2005) Heavy metals contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar Pollut Bull 50:185–194

    Article  Google Scholar 

  • Sheppard DS, Claridge GGC, Campbell IB (2000) Metal contamination of soils at Scott Base, Antarctica. Appl Geochem 15:513–530

    Article  Google Scholar 

  • Silva Busso A, Sánchez R, Fresina M (2000) Caracterización del Comportamiento Hidrogeológico en la Isla Marambio, Antártida. Primer Congreso Mundial Integrado de Aguas Subterráneas. Abstratcs. Fortaleza, Brasil, p 292

  • Silva Busso A, Yermolin Y, Manograsso Czalbowski T (2013) Características del permafrost costero (criopeg) con el uso de técnicas geoeléctricas, Arroyo Díaz, Isla Marambio, Península Antártica. Revista de la Asociación Geológica Argentina 70(4):583–595

    Google Scholar 

  • Skvarca P, De Angelis H, Ermolin E (2004) Mass balance of ‘Galciar Bahía del Diablo’, Vega Island, Antarctic Peninsula. Ann Glaciol 39:209–213

    Article  Google Scholar 

  • Strelin JA, Sone T (1998) Rock glaciers on James Ross Island, Antarctica. In: Proceedings of the Permafrost–Seventh International Conference 55: 1027–1033

  • Timperley MH (1997) A simple temperature-based model for the chemistry of melt-water ponds in the Darwin Glacier area, 80 degrees S. In: Lyons WB, Howard-Williams C, Hawes I (eds) Ecosystem processes in Antarctic ice-free landscapes. Balkema, Rotterdam, pp 197–206

    Google Scholar 

  • Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294

    Article  Google Scholar 

  • Van Lipzig NPM, Turner J, Colwell SR, Van Den Broeke MR (2004) The near-surface wind field over the Antarctic Continent. Int J Climatol 24:1973–1982

    Article  Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional warming on the Antarctic Peninsula. Clim Change 60:243–274

    Article  Google Scholar 

  • Vignoni PA, Lecomte KL, Chaparro MAE, Gargiulo JD, Chaparro MAE, Kopalová K, Córdoba FE, Irurzun A, Lirio JM, Urán G, Gorosito M, Cañas E (2014) Hydrochemical, sedimentological, biological and magnetic characterization of lakes in James Ross Archipelago, Antarctica. III Reunión Argentina de Geoquímica de la Superficie (III RAGSU), Mar del Plata, Argentina, p 208–212 ISBN: 978-978-544-598-7

  • Webster J, Webster K, Nelson P, Waterhouse E (2003) The behaviour of residual contaminants at a former station site, Antarctica. Environ Pollut 123:163–179

    Article  Google Scholar 

  • Zale R, Karlen W (1989) Lake sediment cores from the Antarctic Peninsula and surrounding islands. Geografisku Annaler 71(A): 211–220

Download references

Acknowledgments

The authors wish to thank the UNCPBA, UNC, UNAM, DNA, and CONICET for their financial support. This contribution was supported by the ANPCYT project PICTO-2010-0096. Authors especially thank Ing. J. Escalante from UNAM (México). This study was supported as a long-term research development project RVO no. 67985939. Many thanks to Tyler J. Kohler for the English proof reading and two anonymous reviewers for their comments which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina L. Lecomte.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “3RAGSU”, guest edited by Daniel Emilio Martinez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lecomte, K.L., A. Vignoni, P., Córdoba, F.E. et al. Hydrological systems from the Antarctic Peninsula under climate change: James Ross archipelago as study case. Environ Earth Sci 75, 623 (2016). https://doi.org/10.1007/s12665-016-5406-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5406-y

Keywords

Navigation