Skip to main content

Advertisement

Log in

Geological, hydrogeological, and geothermal factors associated to the origin of arsenic, fluoride, and groundwater temperature in a volcanic environment “El Bajío Guanajuatense”, Mexico

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Arsenic and fluoride groundwater concentrations over national standards for drinking water were measured in the regional aquifer of Juventino Rosas, Guanajuato State, Central Mexico. Also anomalous temperature occurs in groundwater wells of the area. Concentrations of total dissolved solids, silica, and chloride are too low to indicate a geothermal heat source. Additionally, isotopic evidence indicates that groundwater from the studied wells is subject to an evaporation process affected by the humid weather of the zone. The chemical characteristics of the water indicate a deep circulation warm water system in normal geothermal gradient. The warm waters of Juventino Rosas are mainly of three types: Water type I: (Na–HCO3), represented by the highest temperature wells and presence of fluoride and arsenic; water type II (Na–Ca–HCO3) that represents a mixing process between water types I and III. In this group, the sample 13JR contained high concentration of F; water type III (Ca–HCO3), represented only by one sample (Cen 2) located over the outcrop of shales, limestones, and metamorphic rocks. This sample contains the highest concentrations of sulfate, manganese, and iron. All the geological and geochemical evidences indicate that rhyolite units are the most probable source of As and F. The area corresponds to a low-temperature and low-enthalpy system and not to a well defined geothermal system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn JS (2012) Geochemical occurences of arsenic and fluoride in bedrock groundwater: a case study in Geumsan County, Korea. Environ Geochem Health 34:43–54

    Article  Google Scholar 

  • APHA, AWWA and WWF (2005) Standard methods for the Examination of Water and Wastewater. American Public Health Association, the American Water Works Association, Association Water Environment Federation, Washington, DC

  • Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution. Balkema, Rotterdam

    Google Scholar 

  • Armienta MA, Segovia N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30:345–353

    Article  Google Scholar 

  • Arnórsson S (1975) Application of the silica geothermometer in low temperature hydrothermal areas in Iceland. Am J Sci 275:763–784

    Article  Google Scholar 

  • Arnórsson S (1983) Chemical equilibria in icelandic geothermal systems. Implications for chemical geothermometry investigations. Geothermics 12:119–128

    Article  Google Scholar 

  • Cardona BA, Carrillo Rivera JJ, Armienta MA (1993) “Elementos Traza: Contaminación y Valores de Fondo en Aguas Subterráneas de San Luis Potosí, SLP, México”. Geofis Int 32:277–286

    Google Scholar 

  • Carrillo JJ, Armienta MA (1989) Diferenciacion de la Contaminación Inorgánica en las aguas Subterráneas del Valle de la Ciudad de San Luis Potosí, SLP, México. Geofis Int 28–4:763–783

    Google Scholar 

  • Carrillo-Chávez A, Morton-Bermea O, González-Partida E, Rivas-Solorzano H, Oesler G, García-Meza V, Hernández E, Morales P, Cienfuegos E (2003) Environmental geochemistry of the Guanajuato Mining District, Mexico. Ore Geol Rev 23:277–297

    Article  Google Scholar 

  • Cerca-Martínez LM, Aguirre-Díaz GJ, López-Martínez M (2000) The geological evolution of the southern Sierra de Guanajuato; a documented example of the transition from the Sierra Madre Occidental to the Mexican Volcanic Belt. Int Geol Rev 42:131–151

    Article  Google Scholar 

  • Christiansen EH, Sheridan MF, Burt DM (1986) The geology and geochemistry of Cenozoic topaz-rhyolites from western United States. Geol Soc Am Spec Pap 205:1–82

    Article  Google Scholar 

  • Comisión Nacional del Agua (CONAGUA) (2009) Actualización de la disponibilidad media anual de agua subterránea acuífero (1115) valle de Celaya, Estado de Guanajuato. Gerencia de evaluación y ordenamiento de acuíferos. Diario oficial de la Federación, Agosto

  • Coplen T (1988) Normalization of oxygen and hydrogen isotope data. Chem Geol (Isotope Geoscience Section) 72:293–297

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 1961(133):1702–1703

    Article  Google Scholar 

  • Dahlkamp FJ (2010) Uranium deposits of the world. USA and Latino America editor. Springer, Berlin

    Book  Google Scholar 

  • Del Razo LM, Arellano MA, Cebrian ME (1990) The oxidisation states of arsenic in well-water from a chronic arsenicism area of Northern Mexico. Environ Pollut 64:143–153

    Article  Google Scholar 

  • Díaz-Barriga F, Leyva R, Quistian J, Loyola-Rodríguez JB, Pozos A, Grimaldo M (1997) Endemic fluorosis in San Luis Potosi, Mexico. Fluoride 30:219–222

    Google Scholar 

  • Echegoyén-Sánchez J, Romero-Martínez S, y Velázquez-Silva S (1970) Geología y yacimientos minerales de la parte central del Distrito Minero de Guanajuato: México. Boletín del Consejo de Recursos Naturales no Renovables 75:1–36

    Google Scholar 

  • Ellis AJ, Mahon WAJ (1977) Chemistry and geothermal system. Academic Press, New York, p 391

    Google Scholar 

  • Ferrari L (2000) Avances en el conocimiento de la Faja Volcánica Transmexicana durante la última década. Boletín de la Sociedad Geológica Mexicana 53:84–92

    Google Scholar 

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal system. Geothermics 5:41–50

    Article  Google Scholar 

  • Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. W. W. Norton & Co., New York

    Google Scholar 

  • Gibson JJ, Birks SJ, Edwards WD (2008) Global prediction of δA and δ2H-δ18O evaporation slopes for lakes and soil water accounting for seasonality. Global Biogeochem Cycles 22:GB2031

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Article  Google Scholar 

  • Giggenbach WF (1992) Isotopic shifts in waters from geothermal and volcanic systems along margins, and their origin. Earth Planet Sci Lett 113:495–510

    Article  Google Scholar 

  • Hair JF Jr, Anderson RE, Tatham RL, Black WC (1999) Análisis multivariante, 5th edn. Prentice Hall Iberia, Madrid, p 832

    Google Scholar 

  • Hem JD (1985) Study and interpretation of chemical characteristics of natural water, 3rd edn. U.S. Geological Survey, Water supply paper

  • Henley RW, Ellis AJ (1983) Geothermal systems ancient and modern: a geochemical review. Earth Sci Rev 19:1–50

    Article  Google Scholar 

  • Henley RW, Truesdall AH, Barton PB Jr, Whitney JA (1984) Fluid-mineral equilibria in hydrothermal systems. Reviews in economic geology, vol 1. Society of Economic Geologists, Chelsea

    Google Scholar 

  • Hochstein MP (1990) Classification and assessment of goethermal resources. In: Dickson MH, Fanelli M (eds) Small geothermal resources. UNITAR/UNDP Centre for Small Energy Resources, Rome, pp 31–59

    Google Scholar 

  • Issar A, Quijano JL, Gat JR, Castro M (1984) The isotope hydrology of the groundwaters of Central Mexico. J Hydrol 71:201–224

    Article  Google Scholar 

  • Karingithi CW (2009) Chemical geothermometers for geothermal exploration. In: Short Course IV on Exploration for Geothermal Resources: United Nations University, Geothermal Training Program, Lake Vaivasha, Kenya, 1–22 November

  • Kharaka YK, Callender E, Carothers WW (1977) Geochemistry of geopressured geothermal waters from the Texas Gulf Coast. In: Proceedings of 3rd Geopressured-Geothermal Energy Conference 1, pp G1121–G1165

  • Kotoky P, Barooah PK, Baruah MK, Goswami A, Borah GC, Gogoi HM, Ahmed F, Gogoi A, Paul AB (2008) Fluoride and endemic fluorosis in the Karbi Anglong district, Assam, India. Fluoride 41:72–75

    Google Scholar 

  • López DL, Bundschuh J, Birkle P, Armienta MA, Cumbal L, Sracek O, Cornejo L, Ormachea M (2012) Arsenic in volcanic geothermal fluids of Latin America. Sci Total Environ 429:57–75

    Article  Google Scholar 

  • Luo ZD, Zhang YM, Ma L, Zhang GY, He X, Wilson R, Byrd DM, Griffiths JG, Lai S, He L, Grumski K, Lamm SH (1997) Chronic arsenicism and cancer in Inner Mongolia—consequences of well water arsenic levels greater than 50 mg l1. In: Abernathy CO, Calderon RL, Chappell WR (eds) Arsenic exposure and health effects. Chapman and Hall, London, pp 55–68

    Google Scholar 

  • Mejía JA, Rodríguez R, Armienta A, Mata E, Fiorucci A (2007) Aquifer vulnerability zoning, an indicator of atmospheric pollutants input? Vanadium in the Salamanca aquifer, Mexico. Water Air Soil Pollut 185:95–100

    Article  Google Scholar 

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428

    Article  Google Scholar 

  • Morales I (2014) Geological hydrogeological and geothermal factors associated to the origin of arsenic, fluoride and high groundwater temperature in a volcanic environment: El Bajio Guanajuatense. Ph D Thesis, Earth Sciences Posgraduate Program. UNAM, Mexico, p 112

  • Michard G, Sanjuan B, Criaud A, Fouillac C, Pentcheva EN, Petrov PS, Alexieva R (1986) Equilibria and geothermometry in hot alkaline waters from granites of S.W. Bulgaria. Geochem J 20:159–171

    Article  Google Scholar 

  • Mifflin MD (1968) Delineation of groundwater flow systems in Nevada: University of Nevada-Reno, Desert Research Institute, Technical Report Series H-W, Hydrology and Water Resources Publication 4. Reno. Desert Research Institute, University of Nevada-Reno, Nevada

  • Mifflin MD (1988) Region 5, Great Basin. In: Back W, Rosenshein JS, Seaber PR (eds) Hydrogeology, vol O-2. Geological Society of America, The Geology of North America, Boulder, pp 69–86

    Chapter  Google Scholar 

  • Nicholson K (1993) Geothermal fluids: chemistry and exploratin techniques. Springer, Berlin

    Book  Google Scholar 

  • NOM-127-SSA1-1994. Norma Oficial Mexicana “Salud ambiental, agua para uso y consumo humano-límites permisibles de calidad y tratamientos a que debe someterse el aguapara su potabilizacion”

  • Nordstrom DK (2011) Quality of our groundwater resources—arsenic and fluoride. Geosciences 13:82–87 (Water’s Role in the Earth System)

    Google Scholar 

  • Orozco-Esquivel MT, Nieto-Samaniego AF, Alaniz-Alvarez SA (2002) Origin of rhyolitic lavas in the Mesa Central, Mexico, by crustal melting related to extension. J Volcanol Geoth Res 118:37–56

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Am Geophys Union Trans 25:914–923

    Article  Google Scholar 

  • Quijano LJL, Velázquez MN (1985) Evaluación Geoquímica de zonas termales en el Estado de Guanajuato. Comisión Federal de Electricidad. Subgerencia de Estudios Geotérmicos. Departamento de Exploración Informe 4–85

  • Robertson FN (1989) Arsenic in ground water under oxidizing conditions, south-west United States: environmental Geochemical. Health 11:171–185

    Google Scholar 

  • Rodríguez R, Reyes R, Rosales J, Berlín J, Mejía JA, Ramos A (2001) Estructuración de mapas temáticos de índices de vulnerabilidad acuífera de la mancha urbana de Salamanca Gto. Municipio de Salamanca, Technical Report Inedit, CEAG, IGF-UNAM

  • Rodríguez R, Armienta A, Morales P, Silva T, Hernández H (2006) Evaluación de Vulnerabilidad Acuífera del valle de Irapuato Gto. Reporte Técnico JAPAMI, CONCyTEG, IGF UNAM

  • SARH Secretaria de Agricultura y Recursos Hidraulicos (1970) Origen termalismo en el sector suroeste del estado de San Luís Potosí y Norte de Guanajuato, Asociado a depósitos lacustres y actividad volcánica riolítica del Terciario, elaborado por estudios geotécnicos SA

  • Schaef HT, McGrail BP, Owen AT (2010) Carbonate mineralization of volcanic province basalts. Int J Greeen House Control 4:249–261

    Article  Google Scholar 

  • Serna-Vigueras R, Nava-Arrieta J (1958) Yacimientos de alunita en la región de Romero, Guanajuato, Consejo de Recursos Naturales y No renovables, departamento de exploración

  • Smedley PL, Kinninbeurg DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Torres-Rodríguez V, Arellano GV (2000) La Energía Geotérmica en México. UNAM, Programa Universitario de Energía, México

    Google Scholar 

  • Trujillo Candelaria JA (1985) Subsidencia de terrenos en la ciudad de Celaya Gto. Soc Mex de Mec de Suelos I:35–42

    Google Scholar 

  • Velázquez-Aguirre L, Ordaz-Ayala A (1992) Provincias Hidrogeológicas de México. Boletín de la Sociedad Geológica Mexicana 3:1–19

    Google Scholar 

  • Wassenaar LI, Van Wilganburg SL, Larson K, Hobson KA (2009) A groundwater isoscape (D, 18O) for Mexico. J Geochem Explor 102:123–136

    Article  Google Scholar 

  • Webster JG, Nordstrom DK (2003) Geothermal Arsenic. In: Welch AH, Stollenwerk KG (eds) Arsenic in ground water: geochemistry and occurrence. Kluwer Academic Publishers, Boston, pp 101–126

    Chapter  Google Scholar 

  • Wen D, Zhang F, Zhang E, Wang C, Han S, Zheng Y (2013) Arsenic, fluoride and iodine in groundwater of China. J Geochem Explor 135:1–21

    Article  Google Scholar 

  • Werner RA, Brand WA (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom 15:501–519

    Article  Google Scholar 

  • Yokoyama T, Banfield JF (2002) Direct determinations of the rates of rhyolite dissolution and clay formation over 52,000 years and comparison with laboratory measurements. Geochim Cosmochim Acta 66:2665–2681

    Article  Google Scholar 

Download references

Acknowledgments

The research was financed by the PAPIIT UNAM Grant, Num IN102113 and partially by the Grant 207032-2013-04 of the Centro Mexicano de Innovación en Energía Geotérmica (CeMIE-Geo), Fondo Sectorial Conacyt-Sener-Sustentabilidad Energética. CMAPAJR Juventino Rosas dwellers helped in groundwater sampling campaigns. Chemical analyses were done by Aguayo A., Ceniceros N., Cruz O., and Hernandez-Mendiola E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiro Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, I., Villanueva-Estrada, R.E., Rodríguez, R. et al. Geological, hydrogeological, and geothermal factors associated to the origin of arsenic, fluoride, and groundwater temperature in a volcanic environment “El Bajío Guanajuatense”, Mexico. Environ Earth Sci 74, 5403–5415 (2015). https://doi.org/10.1007/s12665-015-4554-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4554-9

Keywords

Navigation