Skip to main content
Log in

Use of Compost from Chestnut Lignocellulosic Residues as Substrate for Tomato Growth

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Composting processes largely depends on microbial activity, but a small amount of data is available about the role of different microbial groups and the potential use of mature composts based on highly lignocellulosic organic materials. In this work microbiological and physico-chemical analyses were carried out aiming to evaluate microbial, physiological and agronomic characteristics of a novel kind of compost obtained from chestnut wastes and used as substrate for tomato (Lycopersicon esculentum Mill.) seedling production. After 345 days of composting, mature compost showed a temperature of 24 °C, pH of 6.9, and a water activity of 0.95. Microbial characterization of hemicellulolytic, cellulolytic and ligninolytic groups in compost showed a different trend during composting process but all were found at a high concentration in the mature compost (106–107 CFU g−1), as well as free-living (N2)-fixing bacteria and Pseudomonas spp. Porosity was 58%, while the value of water holding capacity and compost moisture reached 290 mL L−1 and 40.8%, respectively. Our compost used as substrate for tomato growth, elicited on plantlets a reduction of pigments (chlorophylls and carotenoids) especially for chlorophyll a (594.45 ± 30.25 μg g−1 FW) compared to the control (1064.52 ± 55.05 μg g−1 FW). Moreover, the compost markedly influenced plant antioxidants capacity and stress response observing an increase of the catalase from 17.4 ± 0.15 to 20.3 ± 0.84 µmol H2O2 min−1 mg−1 protein, ascorbate peroxidase activity from 1135 ± 33 to 3213 ± 52 µmol AsA min−1 mg1 protein and ascorbate oxidase activity from 313 ± 8.2 to 1840 ± 29 µmol AsA min−1 mg1 protein in plants grown on 100% peat and 100% compost, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lemaire, J.: Dossier castagno. Sherwood 151, 13–16 (2009)

    Google Scholar 

  2. INFC: The second Italian National Forest Inventory. http://www.sian.it/inventarioforestale/jsp/home_en.jsp (2005)

  3. Schwarz, M., Preti, F., Giadrossich, F., Lehmann, P., Or, D.: Quantifying the role of vegetation in slope stability: a case study in Tuscany (Italy). Ecol. Eng. 36, 285–291 (2010)

    Article  Google Scholar 

  4. Maximising the yield of biomass from residues of agricultural crops and biomass from forestry. Final report. Project number: BIENL15082. https://ec.europa.eu/energy/sites/ener/files/documents/Ecofys%20-%20Final_%20report_%20EC_max%20yield%20biomass%20residues%2020151214.pdf (2016)

  5. Medina, J., Monreal, C., Barea, J.M., Arriagada, C., Borie, F., Cornejo, P.: Crop residue stabilization and application to agricultural and degraded soils: a review. Waste Manag. 42, 41–54 (2015)

    Article  Google Scholar 

  6. Misra, R.V., Roy, R.N., Hiraoka, H.: On farm composting methods. Land and Water Discussion Paper. Food and Agriculture Organization of the United Nations, Rome, Italy (2003)

  7. Paradelo, R., Moldes, A.B., Barral, M.T.: Evolution of organic matter during the mesophilic composting of lignocellulosic winery wastes. J. Environ. Manag. 16, 18–26 (2013)

    Article  Google Scholar 

  8. Roca-Pérez, L., Martínez, C., Marcilla, P., Boluda, R.: Composting rice straw with sewage sludge and compost effects on the soil plant system. Chemosphere 75, 781–787 (2009)

    Article  Google Scholar 

  9. Pepe, O., Ventorino, V., Blaiotta, G.: Dynamic of functional microbial groups during mesophilic composting of agro-industrial wastes and free-living (N2)-fixing bacteria application. Waste Manag. 33, 1616–1625 (2013)

    Article  Google Scholar 

  10. Guerra-Rodríguez, E., Alonso, J., Melgar, M.J., Vázquez, M.: Evaluation of heavy metal contents in co-composts of poultry manure with barley wastes or chestnut burr/leaf. Chemosphere 65, 1801–1805 (2006)

    Article  Google Scholar 

  11. Ventorino, V., Parillo, R., Testa, A., Aliberti, A., Pepe, O.: Chestnut biomass biodegradation for sustainable agriculture. Bioresources 8, 4647–4658 (2013)

    Article  Google Scholar 

  12. Neklyudov, A.D., Fedotov, G.N., Ivankin, A.N.: Intensification of composting processes by aerobic microorganisms: a review. Appl. Biochem. Microbiol. 44, 6–18 (2008)

    Article  Google Scholar 

  13. Zucconi, F., Pera, A., Forte, M., De Bertoldi, M.: Evaluating toxicity of immature compost. Biocycle 2, 54–57 (1981)

    Google Scholar 

  14. DM 13/09/1999: Metodi ufficiali di analisi chimica del suolo. Gazzetta Ufficiale Supplemento Ordinario n° 248 del 21/10/1999 (1999)

  15. Nelson, D.W., Sommers, L.E.: Total carbon, organic carbon and organic matter. In: Sparks, D.L. (ed.) Methods of Soil Analysis. Part 3—Chemical Methods, pp. 961–1010. Soil Science Society of America Inc, Madison, Wisconsin (1996)

    Google Scholar 

  16. Ventorino, V., Amore, A., Faraco, V., Blaiotta, G., Pepe, O.: Selection of cellulolytic bacteria for processing of cellulosic biomass. J. Biotechnol. 150, S181 (2010)

    Article  Google Scholar 

  17. Ventorino, V., Aliberti, A., Faraco, V., Robertiello, A., Giacobbe, S., Ercolini, D., Amore, A., Fagnano, M., Pepe, O.: Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application. Sci. Rep. 5, 8161 (2015)

    Article  Google Scholar 

  18. Pepe, O., Palomba, S., Sannino, L., Blaiotta, G., Ventorino, V., Moschetti, G., Villani, F.: Characterization in the archaeological excavation site of heterotrophic bacteria and fungi of deteriorated wall painting of Herculaneum in Italy. J. Environ. Biol. 32, 241–250 (2011)

    Google Scholar 

  19. Ventorino, V., De Marco, A., Pepe, O., De Santo, A.V., Moschetti, G.: Impact of innovative agricultural practices of carbon sequestration on soil microbial community. In: Piccolo, A. (ed.) Carbon Sequestration in Agricultural Soils. A Multidisciplinary Approach to Innovative Methods, pp. 145–178. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Fiorentino, N., Fagnano, M., Adamo, P., Impagliazzo, A., Mori, M., Pepe, O., Ventorino, V., Zoina, A.: Assisted phytoextraction of heavy metals: compost and Trichoderma effects on giant reed (Arundo donax L.) uptake and soil N-cycle microflora. Ital. J. Agron. 8, 244–254 (2013)

    Google Scholar 

  21. Wellburn, A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144, 307–313 (1994)

    Article  Google Scholar 

  22. Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  Google Scholar 

  23. García-Limones, C., Hervás, A., Navas-Cortés, J.A., Jiménez-Díaz, R.M., Tena, M.: Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum, f. sp. ciceris. Physiol. Mol. Plant Pathol. 61, 325–337 (2002)

    Article  Google Scholar 

  24. Fernández-Trujillo, J.P., Nock, J.F., Watkins, C.B.: Antioxidant enzyme activities in strawberry fruit exposed to high carbon dioxide atmospheres during cold storage. Food Chem. 104, 1425–1429 (2007)

    Article  Google Scholar 

  25. Kelleher, B.P., Leahy, J.J., Henihan, A.M., O’Dwyer, T.F., Sutton, D., Leahy, M.J.: Advances in poultry litter disposal technology—a review. Bioresour. Technol. 83, 27–36 (2002)

    Article  Google Scholar 

  26. Fernandes, L., Zhan, W., Patni, N.K., Jui, P.Y.: Temperature distribution and variation in passively aerated static compost piles. Bioresour. Technol. 48, 257–263 (1994)

    Article  Google Scholar 

  27. De Boodt, M., Verdonck, O., Cappaert, I.: Method for measuring the water release curve of organic substrates. Acta Hortic. 37, 2054–2062 (1974)

    Article  Google Scholar 

  28. Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K., Swings, J.: Microbiological aspects of biowaste during composting in a monitored compost bin. J. Appl. Microbiol. 94, 127–137 (2003)

    Article  Google Scholar 

  29. Van der Heijden, M.G., Bardgett, R.D., van Straalen, N.M.: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008)

    Article  Google Scholar 

  30. Herrmann, R.F., Shann, J.F.: Microbial community changes during the composting of municipal solid waste. Microb. Ecol. 33, 78–85 (1997)

    Article  Google Scholar 

  31. Amore, A., Pepe, O., Ventorino, V., Birolo, L., Giangrande, C., Faraco, V.: Industrial waste based compost as a source of novel cellulolytic strains and enzymes. FEMS Microbiol. Lett. 339, 93–101 (2013)

    Article  Google Scholar 

  32. Huang, D.L., Zeng, G.M., Feng, C.L., Hu, S., Lai, C., Zhao, M.H., Su, F.F., Tang, L., Liu, H.L.: Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting. Bioresour. Technol. 101, 4062–4067 (2010)

    Article  Google Scholar 

  33. Amore, A., Pepe, O., Ventorino, V., Birolo, L., Giangrande, C., Faraco, V.: Cloning and recombinant expression of a cellulase from the cellulolytic strain Streptomyces sp. G12 isolated from compost. Microb. Cell Fact. 11, 164 (2012)

    Article  Google Scholar 

  34. Loveland, P., Webb, J.: Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil Tillage Res. 70, 1–18 (2003)

    Article  Google Scholar 

  35. Ishii, K., Fukui, M., Takii, S.: Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J. Appl. Microbiol. 89, 768–777 (2000)

    Article  Google Scholar 

  36. De Angelis, K.M., Allgaier, M., Chavarria, Y., Fortney, J.L., Hugenholtz, P., Simmons, B., Sublette, K., Silver, W.L., Hazen, T.C.: Characterization of trapped lignin-degrading microbes in tropical forest soil. PLoS ONE 6, e19306 (2011)

    Article  Google Scholar 

  37. Xie, G.H., Cai, M.Y., Tao, G.C., Steinberger, Y.: Cultivable heterotrophic N2-fixing bacterial diversity in rice fields in the Yangtze River Plain. Biol. Fertil. Soils 37, 29–38 (2003)

    Google Scholar 

  38. Orr, C.H., James, A., Leifer, T.C., Cooper, J.M., Cummings, S.P.: Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Appl. Environ. Microbiol. 77, 911–919 (2011)

    Article  Google Scholar 

  39. De Bertoldi, M., Vallini, G., Pera, A.: Technological aspects of composting including modelling and microbiology. In: Gasser, J.K.R. (ed.) Composting of Agricultural and Other Wastes, pp. 27–40. Elsevier, London (1985)

    Google Scholar 

  40. Burr, T.J., Caesar, A., Schrolh, M.N.: Beneficial plant bacteria. Crit. Rev. Plant Sci. 2, 1–20 (1984)

    Article  Google Scholar 

  41. Mazzola, M., Granatstein, D.M., Elfving, D.C., Mullinix, K.: Suppression of specific apple root pathogens by Brassica napus seed meal amendment regardless of glucosinolate content. Phytopathology 91, 673–679 (2001)

    Article  Google Scholar 

  42. Tuitert, G., Szczech, M., Bollen, G.J.: Suppression of Rhizoctonia solani in potting mixtures amended with compost made from organic household waste. Phytopathology 88, 764–773 (1998)

    Article  Google Scholar 

  43. Cross, T.: Actinomycetes: a continuing source of new metabolites. Dev. Ind. Microbiol. 23, 1–18 (1982)

    Google Scholar 

  44. Chroni, C., Kyriacou, A., Georgaki, I., Manios, T., Kotsou, M., Lasaridi, K.: Microbial characterization during composting of biowaste. Waste Manag. 5, 1520–1525 (2009)

    Article  Google Scholar 

  45. Chroni, C., Kyriacou, A., Manios, T., Lasaradi, K.E.: Investigation of the microbial community structure and activity as indicators of compost stability and composting process evolution. Bioresour. Technol. 15, 3745–3750 (2009)

    Article  Google Scholar 

  46. Barrena Gómez, R., Vázquez Lima, F., Sánchez Ferrer, A.: The use of respiration indices in the composting process: a review. Waste Manag. Res. 24, 37–47 (2006)

    Article  Google Scholar 

  47. Pascual, J.A., Ayuso, M., Garcia, C., Hernández, T.: Characterization of urban wastes according to fertility and phytotoxicity parameters. Waste Manag. Res. 15, 103–112 (1997)

    Article  Google Scholar 

  48. Heil, M., Baldwin, T.: Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7, 61–67 (2002)

    Article  Google Scholar 

  49. Ventorino, V., Parillo, R., Testa, A., Viscardi, S., Espresso, F., Pepe, O.: Chestnut green waste composting for sustainable forest management: microbiota dynamics and impact on plant disease control. J. Environ. Manag. 166, 168–177 (2016)

    Article  Google Scholar 

  50. Grime, J.P., Thompson, K., Hunt, R., Hodgson, J.R., Cornelissen, J.H.C., Rorison, I.H., Hendry, G.A.F., Aschenden, T.W., Askew, A.P., Band, S.R., Booth, R.E., Bossard, C.C., Campbell, B.D., Cooper, J.E.L., Davison, A.W., Gupta, P.L., Hall, W., Hand, D.W., Hannah, M.A., Hillier, S.H., Hodkinson, D.J., Jalili, A., Liu, Z., Mackey, J.M.L., Matthews, N., Mowforth, M.A., Neal, A.M., Reader, R.J., Reiling, K., Ross-Fraser, W., Spencer, R.E., Sutton, F., Tasker, D.E., Thorpe, P.C., Whitehouse, J.: Integrated screening validates primary axes of specialisation in plants. Oikos 79, 259–281 (1997)

    Article  Google Scholar 

  51. Jackson, R.B., Caldwell, M.M.: Integrating resource heterogeneity and plant plasticity: modelling nitrate and phosphate uptake in a patchy soil environment. J. Ecol. 84, 891–903 (1996)

    Article  Google Scholar 

  52. Tilman, D.: Plant strategies and the dynamic and structure of plant communities. Princeton University Press, Princeton (1988)

    Google Scholar 

  53. El-Zahaby, H.M., Gullner, G., Király, Z.: Effects of powdery mildew infection of barley on the ascorbate–glutathione cycle and other antioxidants in different host–pathogen interactions. Phytopathology 85, 1225–1230 (1995)

    Article  Google Scholar 

  54. Gönner, M.V., Schlösser, E.: Oxidative stress in interactions between Avena sativa L. and Drechslera spp. Physiol. Mol. Plant Pathol. 42, 221–234 (1993)

    Article  Google Scholar 

  55. de Pinto, M.C., De Gara, L.: Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. J. Exp. Bot. 55, 2559–2569 (2004)

    Article  Google Scholar 

  56. Potters, G., Pasternak, T.P., Guisez, Y., Palme, K.J., Jansen, M.A.K.: Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci. 12, 98–105 (2007)

    Article  Google Scholar 

  57. Tokunaga, T., Miyahara, K., Tabata, K., Esaka, M.: Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for l-galactono-1,4-lactone dehydrogenase. Planta 220, 854–863 (2005)

    Article  Google Scholar 

  58. Iiyama, K., Lam, T.B.T., Stone, B.A.: Covalent cross links in the cell wall. Plant Physiol. 104, 315–320 (1994)

    Article  Google Scholar 

  59. Pomar, F., Caballero, N., Pedreño, M., Ros, Barceló A.: H2O2 generation during the auto-oxidation of coniferyl alcohol drives the oxidase activity of a highly conserved class III peroxidase involved in lignin biosynthesis. FEBS Lett. 529, 198–202 (2002)

    Article  Google Scholar 

  60. Zarra, I., Sanchez, M., Queijero, E., Peña, M.J., Revilla, G.: The cell wall stiffening mechanism in Pinus pinaster Aiton: regulation by apoplastic levels of ascorbate and hydrogen peroxide. J. Sci. Food Agric. 79, 416–420 (1999)

    Article  Google Scholar 

  61. Zheng, X., van Huystee, R.B.: Peroxidase-regulated elongation of segments from peanut hypocotyls. Plant Sci. 81, 47–56 (1992)

    Article  Google Scholar 

  62. Córdoba-Pedregosa, M., González-Reyes, J.A., Canadillas, M., Navas, P., Córdoba, F.: Role of apoplastic and cell-wall peroxidases on the stimulation of root elongation by ascorbate. Plant Physiol. 112, 1119–1125 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by “Campania Region—Research Sector”, Program: “Doctorate in Enterprise.” P.O. F.S.E. Campania 2007/2013—University paths aiming at the promotion of scientific research, innovation and technology transfer -CUP E65E12000150006. Regional Council Deliberation no. 182/2011. Priority: IV—Specific Objective 1—Operational Objective 4. Subproject 2. On farm quality compost for forestry productive systems management: sustainability and plant protection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olimpia Pepe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parillo, R., Ventorino, V., Pepe, O. et al. Use of Compost from Chestnut Lignocellulosic Residues as Substrate for Tomato Growth. Waste Biomass Valor 8, 2711–2720 (2017). https://doi.org/10.1007/s12649-016-9761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9761-4

Keywords

Navigation