Skip to main content

Advertisement

Log in

Comparison of Anaerobic Degradation Processes for Bioenergy Generation from Liquid Fraction of Pressed Solid Waste

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A novel substrate (obtained from biofraction of municipal solid waste by pressing and called LPW) rich in organic substances was used in three anaerobic degradation processes (biogas, biohydrogen fermentation and microbial fuel cells) to comparatively assess their feasibility for energy recovery. It has turned out that all the processes have successfully degraded that substrate and produced energy carriers (methane and hydrogen) as well as bioelectricity. The maximum energy yields (J g−1 CODremoved day−1) and associated COD removal capacities were 255, 200, 2.8 and 46, 52 and 72 % for biohydrogen, biogas and microbial fuel cell, respectively. The outcomes suggested the prominence of biohydrogen process for simultaneous waste treatment and energy recovery from LPW under the test conditions ensured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fino, D., Conti, E., Martini, R., Conti, R.: Future perspectives for bio-energy production in the province of Turin. Waste Biomass Valorz. 2, 59–64 (2011)

    Article  Google Scholar 

  2. Savva, P.G., Costa, C.N., Charalambides, A.G.: Environmental, economical and marketing aspetcs of the operation of a waste-to-energy plant in the Kotsiatis landfill in Cyprus. Waste Biomass Valorz. 4, 259–269 (2013)

    Article  Google Scholar 

  3. Zis, T., Bell, M.G.H., Tolis, A., Aravossis, K.: Economic evaluation of alternative options for municipal solid waste management in remote locations. Waste Biomass Valorz. 4, 287–296 (2013)

    Article  Google Scholar 

  4. Sarkady, A., Kurdi, R., Rédey, A.: RDF—refuse derived fuel, possibilities in the North-Balaton Regional waste management system. Pollack Period. 9, 23–30 (2014)

    Article  MATH  Google Scholar 

  5. Gerardi, H.M.: The Microbiology of Anaerobic Digesters. Wiley, Hoboken (2003)

    Book  Google Scholar 

  6. Mata-Alvarez, J., Macé, S., Llabrés, P.: Anaerobic digestion of organic solid wastes. An overview of research achivements and perspectives. Bioresour. Technol. 74, 3–16 (2000)

    Article  Google Scholar 

  7. Speece, R.E.: Anaerobic Biotechnology for Industrial Wastewaters. Archae Press, Tennessee (1996)

    Google Scholar 

  8. Bakonyi, P., Nemestóthy, N., Simon, V., Bélafi-Bakó, K.: Review on the start-up experiences of continuous fermentive hydrogen producing bioreactors. Renew. Sustain. Energy Rev. 40, 806–813 (2014)

    Article  Google Scholar 

  9. Bakonyi, P., Nemestóthy, N., Simon, V., Bélafi-Bakó, K.: Fermentative hydrogen production in anaerobic membrane bioreactors: a review. Bioresour. Technol. 156, 357–363 (2014)

    Article  Google Scholar 

  10. Kumar, G., Bakonyi, P., Periyasamy, S., Kim, S.H., Nemestóthy, N., Bélafi-Bakó, K.: Lignocellulose biohydrogen: practical challenges and recent progress. Renew. Sustain. Energy Rev. (2015). doi:10.1016/j.rser.2015.01.042

    Google Scholar 

  11. Bakonyi, P., Nemestóthy, N., Bélafi-Bakó, K.: Biohydrogen purification by membranes: an overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes. Int. J. Hydrog. Energy 38, 9673–9687 (2013)

    Article  Google Scholar 

  12. Bakonyi, P., Kumar, G., Nemestóthy, N., Lin, C.Y., Bélafi-Bakó, K.: Biohydrogen purification using a commercial polyimide membrane module: studying the effects of some process variables. Int. J. Hydrog. Energy 38, 15092–15099 (2013)

    Article  Google Scholar 

  13. Ramírez-Morales, J.E., Tapia-Venegas, E., Nemestóthy, N., Bakonyi, P., Bélafi-Bakó, K., Ruiz-Filippi, G.: Evaluation of two gas membrane modules for fermentative hydrogen separation. Int. J. Hydrog. Energy 38, 14042–14052 (2013)

    Article  Google Scholar 

  14. Bauer, F., Persson, T., Hulteberg, C., Tamm, D.: Biogas upgrading—technology overview, comparison and perspectives for the future. Biofuels Bioprod. Biorefin. 7, 499–511 (2013)

    Article  Google Scholar 

  15. Chmielewski, A.G., Urbaniak, A., Wawryniuk, K.: Membrane enrichment of biogas from two-stage pilot plant using agricultural waste as a substrate. Biomass Bioenergy 58, 219–228 (2013)

    Article  Google Scholar 

  16. Szentgyörgyi, E., Nemestóthy, N., Bélafi-Bakó, K.: Anaerobic moving bed biofilm fermenter for biogas production. Environ. Prot. Eng. 36, 117–125 (2010)

    Google Scholar 

  17. Szentgyörgyi, E., Nemestóthy, N., Bélafi-Bakó, K.: Application of membranes in biogas production. Desalin. Water Treat. 14, 112–115 (2010)

    Article  Google Scholar 

  18. Bélafi-Bakó, K., Búcsú, D., Pientka, Z., Bálint, B., Herbel, Z., Kovács, K.L., Wessling, M.: Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen. Int. J. Hydrog. Energy 31, 1490–1495 (2006)

    Article  Google Scholar 

  19. Bakonyi, P., Nemestóthy, N., Lövitusz, É., Bélafi-Bakó, K.: Application of Plackett–Burman experimental design to optimize biohydrogen fermentation by E. coli (XL1-BLUE). Int. J. Hydrog. Energy 36, 13949–13954 (2011)

    Article  Google Scholar 

  20. Bakonyi, P., Nemestóthy, N., Ramirez, J., Ruiz-Filippi, G., Bélafi-Bakó, K.: E. coli (XL1-BLUE) for continuous fermentation of bioH2 and its separation by polyimide membrane. Int. J. Hydrog. Energy 37, 5623–5630 (2012)

    Article  Google Scholar 

  21. Bakonyi, P., Borza, B., Orlovits, K., Simon, V., Nemestóthy, N., Bélafi-Bakó, K.: Fermentative hydrogen production by conventionally and unconventionally heat pretreated seed cultures: a comparative assessment. Int. J. Hydrog. Energy 39, 5589–5596 (2014)

    Article  Google Scholar 

  22. Bakonyi, P., Nemestóthy, N., Lankó, J., Rivera, I., Buitrón, G., Bélafi-Bakó, K.: Simultaneous biohydrogen production and purification in a double-membrane bioreactor system. Int. J. Hydrog. Energy 40, 1690–1697 (2015)

    Article  Google Scholar 

  23. Logan, B.E.: Microbial Fuel Cells. Wiley, New York (2008)

    Google Scholar 

  24. Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Rabaey, K.: Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181–5192 (2006)

    Article  Google Scholar 

  25. Lovley, D.R.: Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr. Opin. Biotechnol. 17, 327–332 (2006)

    Article  Google Scholar 

  26. Bélafi-Bakó, K., Vajda, B., Nemestóthy, N.: Study on operation of a microbial fuel cell using mesophilic anaerobic sludge. Desalin. Water Treat. 35, 222–226 (2011)

    Article  Google Scholar 

  27. Vajda, B., Nemestóthy, N., Bakonyi, P., Belafi-Bakó, K.: Xylose substrate as the only nutrient in the operation of microbial fuel cells. Environ. Prot. Eng. 40, 132–141 (2014)

    Google Scholar 

  28. Wei, J., Liang, P., Huang, X.: Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 102, 9335–9344 (2011)

    Article  Google Scholar 

  29. APHA: Standard Methods for the Examination of Water and Wastewater, 19th edn. American Public Health Association, New York (1995)

    Google Scholar 

  30. Oz, N.A., Yarimtepe, C.C.: Ultrasound assisted biogas production from landfill leachate. Waste Manag. 34, 1165–1170 (2014)

    Article  Google Scholar 

  31. Luo, J., Lu, X., Liu, J., Qian, G., Lu, Y.: Biogas recirculation for simultaneous calcium removal and biogas purification within an expanded granular sludge bed system treating leachate. Bioresour. Technol. 173, 317–323 (2014)

    Article  Google Scholar 

  32. Liu, Q., Zhang, X., Zhou, Y., Zhao, A., Chen, S., Qian, G., Xu, Z.P.: Optimization of fermentative biohydrogen production by response surface methodology using fresh leachate as nutrient supplement. Bioresour. Technol. 102, 8661–8668 (2011)

    Article  Google Scholar 

  33. Watanabe, H., Yoshino, H.: Biohydrogen using leachate from an industrial waste landfill as inoculum. Renew. Energy 35, 921–924 (2010)

    Article  Google Scholar 

  34. Gálvez, A., Greenman, J., Ieropoulos, I.: Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresour. Technol. 100, 5085–5091 (2009)

    Article  Google Scholar 

  35. Ganesh, K., Jambeck, J.R.: Treatment of landfill leachate using microbial fuel cells: alternative anodes and semi-continuous operation. Bioresour. Technol. 139, 383–387 (2013)

    Article  Google Scholar 

  36. Tugtas, A.E., Cavdar, P., Calli, B.: Bio-electrochemical post-treatment of anaerobically treated landfill leachate. Bioresour. Technol. 139, 266–272 (2013)

    Article  Google Scholar 

  37. Zhu, B., Zhang, R., Gikas, P., Rapport, J., Jenkins, B., Li, X.: Biogas production from municipal solid wastes using an integrated rotary drum and anaerobic-phased solids digester system. Bioresour. Technol. 101, 6374–6380 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union and co-financed by the European Social Fund in the frame of the TAMOP-4.2.2.A-11/1/KONV-2012-0071 and TAMOP-4.2.2/A-11/1/KONV-2012-0038 projects. Nándor Nemestóthy acknowledges the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bakonyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rózsenberszki, T., Koók, L., Hutvágner, D. et al. Comparison of Anaerobic Degradation Processes for Bioenergy Generation from Liquid Fraction of Pressed Solid Waste. Waste Biomass Valor 6, 465–473 (2015). https://doi.org/10.1007/s12649-015-9379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9379-y

Keywords

Navigation