Skip to main content
Log in

Mitochondrial Dysfunction Precedes Other Sub-Cellular Abnormalities in an In Vitro Model Linked with Cell Death in Parkinson’s Disease

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Dysfunction of mitochondria, the ubiquitin proteasome system (UPS), and lysosomes are believed to contribute to the pathogenesis of Parkinson’s disease (PD). If it were possible to rescue functionally compromised, but still viable neurons early in the disease process, this would slow the rate of neurodegeneration. Here, we used a catecholaminergic neuroblastoma cell line (SH-SY5Y) as a model of susceptible neurons in PD. To identify a target early in the cell death process that was common to all neurodegenerative processes linked with PD, cells were exposed to toxins that mimic cell death mechanisms associated with PD. The sub-cellular abnormalities that occur shortly after toxin exposure were determined. 3 h of exposure to either naphthazarin, to inhibit lysosomal function, Z-Ile-Glu(OBut)-Ala-Leu-H (PSI), to inhibit the UPS, or rotenone, to inhibit mitochondrial complex I, caused depolarisation of the mitochondrial membrane potential (2.5-fold, twofold, and 4.6-fold change, respectively compared to vehicle), suggesting impaired mitochondrial function. Following 24 h exposure to the same toxins, UPS and lysosomal function were also impaired, and ubiquitin levels were increased. Thus, following exposure to toxins that mimic three important, but disparate cell death mechanisms associated with PD, catecholaminergic cells initially experience mitochondrial dysfunction, which is then followed by abnormalities in UPS and lysosomal function. Thus, mitochondrial dysfunction is an early event in cell stress. We suggest that, in patients with PD, the surviving cells of the substantia nigra pars compacta are most susceptible to mitochondrial impairment. Thus, targeting the mitochondria may be useful for slowing the progression of neurodegeneration in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ardley HC, Scott GB, Rose SA, Tan NG, Robinson PA (2004) UCH-L1 aggresome formation in response to proteasome impairment indicates a role in inclusion formation in Parkinson’s disease. J Neurochem 90:379–391

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E, Yilmazer D, de Vos RA, Jansen EN, Bohl J (1996) Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J Neural Transm 103:455–490

    Article  PubMed  CAS  Google Scholar 

  • Busija DW, Gaspar T, Domoki F, Katakam PV, Bari F (2008) Mitochondrial-mediated suppression of ROS production upon exposure of neurons to lethal stress: mitochondrial targeted preconditioning. Adv Drug Deliv Rev 60:1471–1477

    Article  PubMed  CAS  Google Scholar 

  • Cho HS, Kim S, Lee SY, Park JA, Kim SJ, Chun HS (2008) Protective effect of the green tea component, l-theanine on environmental toxins-induced neuronal cell death. Neurotoxicology 29:656–662

    Article  PubMed  CAS  Google Scholar 

  • Chu Y, Dodiya H, Aebischer P, Olanow CW, Kordower JH (2009) Alterations in lysosomal and proteasomal markers in Parkinson’s disease: relationship to alpha-synuclein inclusions. Neurobiol Dis 35:385–398

    Article  PubMed  CAS  Google Scholar 

  • Chung WG, Miranda CL, Maier CS (2007) Epigallocatechin gallate (EGCG) potentiates the cytotoxicity of rotenone in neuroblastoma SH-SY5Y cells. Brain Res 1176:133–142

    Article  PubMed  CAS  Google Scholar 

  • Cookson MR (2003) Parkin’s substrates and the pathways leading to neuronal damage. Neuromol Med 3:1–13

    Article  CAS  Google Scholar 

  • Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295

    Article  PubMed  CAS  Google Scholar 

  • Dadakhujaev S, Noh HS, Jung EJ, Cha JY, Baek SM, Ha JH, Kim DR (2010) Autophagy protects the rotenone-induced cell death in alpha-synuclein overexpressing SH-SY5Y cells. Neurosci Lett 472:47–52

    Article  PubMed  CAS  Google Scholar 

  • Di Fonzo A et al (2007) ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 68:1557–1562

    Article  PubMed  CAS  Google Scholar 

  • Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437–448

    Article  PubMed  CAS  Google Scholar 

  • Hardy J (2010) Genetic analysis of pathways to Parkinson disease. Neuron 68:201–206

    Article  PubMed  CAS  Google Scholar 

  • Hatano T, Kubo S, Sato S, Hattori N (2009) Pathogenesis of familial Parkinson’s disease: new insights based on monogenic forms of Parkinson’s disease. J Neurochem 111:1075–1093

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (1992) Ubiquitin and intracellular protein degradation. Curr Opin Cell Biol 4:1024–1031

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1972) Dopamine and extrapyramidal motor function and dysfunction. Res Publ Assoc Res Nerv Ment Dis 50:390–415

    PubMed  CAS  Google Scholar 

  • Irrcher I et al (2010) Loss of the Parkinson’s disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum Mol Genet 19:3734–3746

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (1993) Altered mitochondrial function, iron metabolism and glutathione levels in Parkinson’s disease. Acta Neurol Scand Suppl 146:6–13

    PubMed  CAS  Google Scholar 

  • Jiang H, Ren Y, Zhao J, Feng J (2004) Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet 13:1745–1754

    Article  PubMed  CAS  Google Scholar 

  • Kanda S, Bishop JF, Eglitis MA, Yang Y, Mouradian MM (2000) Enhanced vulnerability to oxidative stress by alpha-synuclein mutations and C-terminal truncation. Neuroscience 97:279–284

    Article  PubMed  CAS  Google Scholar 

  • Kettern N, Dreiseidler M, Tawo R, Hohfeld J (2010) Chaperone-assisted degradation: multiple paths to destruction. Biol Chem 391:481–489

    Article  PubMed  CAS  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  PubMed  CAS  Google Scholar 

  • Koch A, Lehmann-Horn K, Dachsel JC, Gasser T, Kahle PJ, Lucking CB (2009) Proteasomal inhibition reduces parkin mRNA in PC12 and SH-SY5Y cells. Parkinsonism Relat Disord 15:220–225

    Article  PubMed  Google Scholar 

  • Kubota H (2009) Quality control against misfolded proteins in the cytosol: a network for cell survival. J Biochem 146:609–616

    Article  PubMed  CAS  Google Scholar 

  • Lannuzel A, Michel PP, Hoglinger GU, Champy P, Jousset A, Medja F, Lombes A, Darios F, Gleye C, Laurens A, Hocquemiller R, Hirsch EC, Ruberg M (2003) The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism. Neuroscience 121:287–296

    Article  PubMed  CAS  Google Scholar 

  • Lees AJ, Singleton AB (2007) Clinical heterogeneity of ATP13A2 linked disease (Kufor-Rakeb) justifies a PARK designation. Neurology 68:1553–1554

    Article  PubMed  Google Scholar 

  • Leigh PN, Probst A, Dale GE, Power DP, Brion JP, Dodson A, Anderton BH (1989) New aspects of the pathology of neurodegenerative disorders as revealed by ubiquitin antibodies. Acta Neuropathol 79:61–72

    Article  PubMed  CAS  Google Scholar 

  • Magen I, Chesselet MF (2010) Genetic mouse models of Parkinson’s disease the state of the art. Prog Brain Res 184:53–87

    Article  PubMed  CAS  Google Scholar 

  • Martinat C, Shendelman S, Jonason A, Leete T, Beal MF, Yang L, Floss T, Abeliovich A (2004) Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES-derived cell model of primary Parkinsonism. PLoS Biol 2:e327

    Article  PubMed  Google Scholar 

  • Murray AM, Weihmueller FB, Marshall JF, Hurtig HI, Gottleib GL, Joyce JN (1995) Damage to dopamine systems differs between Parkinson’s disease and Alzheimer’s disease with parkinsonism. Ann Neurol 37:300–312

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, Maruyama W, Shamoto-Nagai M, Yi H, Akao Y, Tanaka M (2005) Oxidative stress in mitochondria: decision to survival and death of neurons in neurodegenerative disorders. Mol Neurobiol 31:81–93

    Article  PubMed  CAS  Google Scholar 

  • Nonaka T, Hasegawa M (2009) A cellular model to monitor proteasome dysfunction by alpha-synuclein. Biochemistry 48:8014–8022

    Article  PubMed  CAS  Google Scholar 

  • Olzmann JA, Chin LS (2008) Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy 4:85–87

    PubMed  CAS  Google Scholar 

  • Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723

    Article  PubMed  Google Scholar 

  • Qian JJ, Cheng YB, Yang YP, Mao CJ, Qin ZH, Li K, Liu CF (2008) Differential effects of overexpression of wild-type and mutant human alpha-synuclein on MPP+-induced neurotoxicity in PC12 cells. Neurosci Lett 435:142–146

    Article  PubMed  CAS  Google Scholar 

  • Radke S, Chander H, Schafer P, Meiss G, Kruger R, Schulz JB, Germain D (2008) Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J Biol Chem 283:12681–12685

    Article  PubMed  CAS  Google Scholar 

  • Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG, Behrens MI, Kubisch C (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38:1184–1191

    Article  PubMed  CAS  Google Scholar 

  • Sakata E, Yamaguchi Y, Kurimoto E, Kikuchi J, Yokoyama S, Yamada S, Kawahara H, Yokosawa H, Hattori N, Mizuno Y, Tanaka K, Kato K (2003) Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep 4:301–306

    Article  PubMed  CAS  Google Scholar 

  • Sapkota K, Kim S, Park SE, Kim SJ (2011) Detoxified extract of Rhus verniciflua stokes inhibits rotenone-induced apoptosis in human dopaminergic cells, SH-SY5Y. Cell Mol Neurobiol 31:213–223

    Article  PubMed  Google Scholar 

  • Shamoto-Nagai M, Maruyama W, Kato Y, Isobe K, Tanaka M, Naoi M, Osawa T (2003) An inhibitor of mitochondrial complex I, rotenone, inactivates proteasome by oxidative modification and induces aggregation of oxidized proteins in SH-SY5Y cells. J Neurosci Res 74:589–597

    Article  PubMed  CAS  Google Scholar 

  • Shendelman S, Jonason A, Martinat C, Leete T, Abeliovich A (2004) DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biol 2:e362

    Article  PubMed  Google Scholar 

  • Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, Matsuno-Yagi A, Miller GW, Greenamyre JT (2007) Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem 100:1469–1479

    PubMed  CAS  Google Scholar 

  • Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA (2001) Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 21:9549–9560

    PubMed  CAS  Google Scholar 

  • Sullivan PG, Dragicevic NB, Deng JH, Bai Y, Dimayuga E, Ding Q, Chen Q, Bruce-Keller AJ, Keller JN (2004) Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. J Biol Chem 279:20699–20707

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Engelender S, Igarashi S, Rao RK, Wanner T, Tanzi RE, Sawa A, LD V, Dawson TM, Ross CA (2001) Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum Mol Genet 10:919–926

    Article  PubMed  CAS  Google Scholar 

  • Todde V, Veenhuis M, van der Klei IJ (2009) Autophagy: principles and significance in health and disease. Biochim Biophys Acta 1792:3–13

    PubMed  CAS  Google Scholar 

  • von Bohlen und Halbach O, Schober A, Krieglstein K (2004) Genes, proteins, and neurotoxins involved in Parkinson’s disease. Prog Neurobiol 73:151–177

    Article  PubMed  CAS  Google Scholar 

  • Whitworth AJ, Pallanck LJ (2009) The PINK1/Parkin pathway: a mitochondrial quality control system? J Bioenerg Biomembr 41:499–503

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Poon WS, Lu G, Wang A, Meng H, Feng L, Li Z, Liu S (2009) Alpha-synuclein knockdown attenuates MPP+ induced mitochondrial dysfunction of SH-SY5Y cells. Brain Res 1292:173–179

    Article  PubMed  CAS  Google Scholar 

  • Xie HR, Hu LS, Li GY (2010) SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med J 123:1086–1092

    PubMed  CAS  Google Scholar 

  • Xie H, Chang M, Hu X, Wang D, Tian M, Li G, Jiang H, Wang Y, Dong Z, Zhang Y, Hu L (2011) Proteomics analysis of MPP(+)-induced apoptosis in SH-SY5Y cells. Neurol Sci 32:221–228

    Article  PubMed  Google Scholar 

  • Yong-Kee CJ, Salomonczyk D, Nash JE (2011) Development and validation of a screening assay for the evaluation of putative neuroprotective agents in the treatment of Parkinson’s disease. Neurotox Res 19:7

    Article  Google Scholar 

  • Yun J, Cao JH, Dodson MW, Clark IE, Kapahi P, Chowdhury RB, Guo M (2008) Loss-of-function analysis suggests that Omi/HtrA2 is not an essential component of the PINK1/PARKIN pathway in vivo. J Neurosci 28:14500–14510

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Natural Sciences and Engineering Research Council of Canada and the Canadian Foundation for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Nash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yong-Kee, C.J., Sidorova, E., Hanif, A. et al. Mitochondrial Dysfunction Precedes Other Sub-Cellular Abnormalities in an In Vitro Model Linked with Cell Death in Parkinson’s Disease. Neurotox Res 21, 185–194 (2012). https://doi.org/10.1007/s12640-011-9259-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-011-9259-6

Keywords

Navigation