Skip to main content
Log in

High organic carbon deposition in the northern margin of the Aleutian Basin (Bering Sea) before the last deglaciation

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

High-resolution geochemical, isotope and elemental data from core PC23A in the northern margin of the Aleutian Basin (Bering Sea) were used to reconstruct distinct paleoceanographic features of the last deglaciation (pre-Boreal[PB], Bølling-Allerød[BA], Younger Dryas[YD]). The PB and BA intervals are characterized by increased siliceous (diatom) and calcareous (coccolithophores and foraminifers) productivity represented by high biogenic opal and CaCO3 contents, respectively. The enhanced productivity can plausibly be attributed to an elevated sea-surface nutrient supply from increased melt-water input and enhanced Alaskan Stream injection under warm, restricted sea-ice conditions. High Corg/N ratios and low δ13C values of sediment organic matter during the PB and BA intervals reflect the contribution of terrestrial organic matters. The PB and BA intervals were also identified by laminated sediment layers of core PC23A, characterized by high Mo/Al and Cd/Al ratios, indicating that the bottom water condition remained anoxic. High δ15N values during the same period were attributed mainly to the increased nutrient utilization and subsequent denitrification of seawater nitrate. Part of high δ15N values may also be due to incorporation of inorganic nitrogen in the clay minerals. It is worthy of note that high total organic carbon (TOC) deposition occurred approximately 3,000 years before onset of the last deglaciation. Simultaneous high Corg/N ratios and low δ13C values clearly suggest that the high TOC content should be related to terrestrial organic carbon input. Low δ15N values during the high TOC interval also confirm the contribution of terrigenous organic matter. Although abundant calcareous phytoplankton production under cold, nutrient-poor conditions represented by Baex data was reported for high TOC deposition preceding the last deglaciation in an earlier study of the Okhotsk Sea, the main reason for the enhanced TOC deposition in the Bering Sea is an increased terrigenous input from the submerged continental shelves (Beringia) with a sea-level rise; this is further supported by Al enrichment of bulk sediments during the high TOC deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahk JJ, Han SJ, Khim BK (2004) Variations of terrigenous sediment supply to the southern slope of the Ulleung Basin, the East/Japan Sea since the Last Glacial Maximum. Geosci J 8:381–390

    Article  Google Scholar 

  • Behl RJ, Kennett JP (1996) Brief interstadial events in the Santa Barbara Basin, NE Pacific, during the past 60 kyr. Nature 379:243–246

    Article  Google Scholar 

  • Brunelle BG, Sigman DM, Cook MS, Keigwin LD, Haug GH, Plessen B, Schettler G, Jaccard SL (2007) Evidence from diatombound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes. Paleoceanography 22:PA1215. doi:10.1029/2005PA001205

    Article  Google Scholar 

  • Caissie BE, Brigham-Grette J, Lawrence KT, Herbert TD, Cook MS (2010) Last Glacial Maximum to Holocene sea surface conditions at Umnak Plateau, Bering Sea, as inferred from diatom, alkenone, and stable isotope records. Paleoceanography 25:PA1206. doi:10.1029/2008PA001671

    Article  Google Scholar 

  • Chekhovskaya MP, Basov IA, Matul AG, Khusid TA, Gorbarenko SA (2008) Planktonic foraminifers in the southern Bering Sea: changes in composition and productivity during the late Pleistocene-Holocene. Stratigr Geol Corr 16:328–342

    Article  Google Scholar 

  • Cook MS, Keigwin LD, Sancetta CA (2005) The deglacial history of surface and intermediate water of the Bering Sea. Deep-Sea Res II 52:2163–2173

    Article  Google Scholar 

  • Crusius J, Calvert SE, Pedersen TF, Saga D (1996) Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and anoxic conditions of deposition. Earth Planet Sci Lett 145:65–78

    Article  Google Scholar 

  • Crusius J, Pedersen TF, Kienast S, Keigwin L, Labeyrie L (2004) Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bølling-Allerød interval (14.7–12.9 ka). Geology 32:633–636

    Article  Google Scholar 

  • DeMaster DJ (1981) The supply and accumulation of silica in the marine-environment. Geochim Cosmochim Acta 45:1715–1732

    Article  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Millero FJ, Lamb MF, Greeley D, Bullister JL, Key RM, Peng T-H, Kozyr A, Ono T, Wong CS (2002) In situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochem Cycles 16:1144. doi:10.1029/2002GB001866

    Article  Google Scholar 

  • Gorbarenko SA, Basov IA, Chekhovskaya MP, Southon J, Khusid TA, Artemova AV (2005) Orbital and millennium scale environmental changes in the southern Bering Sea during the last glacial-Holocene: geochemical and paleontological evidence. Deep-Sea Res II 52:2174–2185

    Article  Google Scholar 

  • Gorbarenko SA, Wang P, Wang R, Cheng X (2010) Orbital and suborbital environmental changes in the southern Bering sea during the last 50 kyr. Palaeogeogr Palaeoclimatol Palaeoecol 286:97–106

    Article  Google Scholar 

  • Hu A, Meehl GA, Han W (2007) Role of the Bering Strait in the thermohaline circulation and abrupt climate change. Geophys Res Lett 34:L05704. doi:10.1029/2006GL028906

    Article  Google Scholar 

  • Inagaki M, Yamamoto M, Igarashi Y, Ikehara K (2009) Biomarker records from core GH02-1030 off Tokachi in the northwestern Pacific over the last 23,000 years: environmental changes during the last deglaciation. J Oceanogr 65:847–858

    Article  Google Scholar 

  • Ishizaki Y, Ohkushi K, Ito T, Kawahata H (2009) Abrupt changes of intermediate-water oxygen in the northwestern Pacific during the last 27 kyr. Geo Mar Lett 29:125–131

    Article  Google Scholar 

  • Itaki T, Komatsu N, Motoyama I (2007) Orbital- and millennialscale changes of radiolarian assemblages during the last 220 kyrs in the Japan Sea. Palaeogeogr Palaeoclimatol Palaeoecol 247:115–130

    Article  Google Scholar 

  • Itaki T, Uchida M, Kim S, Shin HS, Tada R, Khim BK (2009) Late Pleistocene stratigraphy and paleoceanographic implications in northern Bering Sea slope sediments: evidence from the radiolarian species Cycladophora davisiana. J Quat Sci 24: 856–865

    Article  Google Scholar 

  • Jaccard SL, Haug GH, Sigman DM, Pedersen TF, Thierstein HR, Röhl U (2005) Glacial/interglacial changes in subarctic North Pacific stratification. Science 308:1003–1006

    Article  Google Scholar 

  • Katsuki K, Takahashi K (2005) Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late Quaternary. Deep-Sea Res II 52:2110–2130

    Article  Google Scholar 

  • Keigwin LD, Jones GA (1990) Deglacial climatic oscillation in the Gulf of California. Paleoceanography 5:1009–1023

    Article  Google Scholar 

  • Keigwin LD, Jones GA, Froelich PN (1992) A 15,000 year paleoenvironmental record from Meiji Seamount, far northwestern Pacific. Earth Planet Sci Lett 111:425–440

    Article  Google Scholar 

  • Kiefer T, Sarnthein M, Erlenkeuser H, Grootes PM, Robert AP (2001) North Pacific response to millennial-scale changes in ocean circulation over the last 60 kyr. Paleoceanography 16:179–189

    Article  Google Scholar 

  • Morley JJ, Robinson SW (1986) Improved method for correlating late Pleistocene/Holocene records from the Bering Sea: application of a biosiliceous/geochemical stratigraphy. Deep-Sea Res I 33:1203–1211

    Article  Google Scholar 

  • Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic opal in marine sediments. Deep-Sea Res I 36:1415–1426

    Article  Google Scholar 

  • Narita H, Sato M, Tsunogai S, Murayama M, Ikehara M, Nakatsuka T, Wakatsuchi M, Harada N, Ujiie Y (2002) Biogenic opal indicating less productive northwestern North Pacific during the glacial ages. Geophys Res Lett 29:1732. doi:10.1029/2001GL014320

    Article  Google Scholar 

  • Niebauer HJ, Bond NA, Yakunin LP, Plotnikov VV (1999) An update on the climatology and sea ice of the Bering Sea. In: Loughlin TR, Ohtani K (eds) Dynamics of the Bering Sea. University of Alaska Sea Grant, Fairbanks, AK, pp 22–59

    Google Scholar 

  • Ohkushi K, Itaki T, Nemoto N (2003) Last glacial-Holocene change in intermediate water ventilation in the North Pacific. Quat Sci Rev 22:1477–1484

    Article  Google Scholar 

  • Okada M, Takagi M, Narita H, Takahashi K (2005) Chronostratigraphy of sediment cores from the Bering Sea and the subarctic Pacific based on paleomagnetic and oxygen isotopic analyses. Deep-Sea Res II 52:2092–2109

    Article  Google Scholar 

  • Okazaki Y, Takahashi K, Asahi A, Katsuki K, Hori J, Yasuda H, Sagawa Y, Tokuyama H (2005) Productivity changes in the Bering Sea during the late Quaternary. Deep-Sea Res II 52:2150–2162

    Article  Google Scholar 

  • Sancetta CA, Heusser L, Labeyrie L, Naidu AS, Robinson SW (1985) Wisconsin-Holocene paleoenvironment of the Bering Sea: evidence from diatoms, pollen, oxygen isotopes and clay minerals. Mar Geol 62:55–68

    Article  Google Scholar 

  • Sato MM, Narita H, Tsunogai S (2002) Barium increasing prior to opal during the last termination of glacial ages in the Okhotsk Sea sediments. J Oceanogr 58:461–467

    Article  Google Scholar 

  • Seki O, Kawamura K, Nakatsuka T, Ohnishi K, Ikehara M, Wakatsuchi M (2003) Sediment core profiles of long-chain n-alkanes in the Sea of Okhotsk: enhanced transport of terrestrial organic matter from the last deglaciation to the early Holocene. Geophys Res Lett 30:1001. doi:10.1029/2001GL014464

    Article  Google Scholar 

  • Sigman DM, Altabet MA, Francois R, McCorkle DC, Fischer G (1999) The 15N of nitrate in the Southern Ocean: consumption of nitrate in surface waters. Global Biogeochem Cycles 13: 1149–1166

    Article  Google Scholar 

  • Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac FG, Plicht JVD, Spurk M (1998) INTCAL98 Radiocarbon age calibration 24,000-0 cal BP. Radiocarbon 40:1041–1083

    Google Scholar 

  • Takahashi K (2005) The Bering Sea and paleoceanography. Deep-Sea Res II 52:2080–2091

    Article  Google Scholar 

  • Tanaka S, Takahashi K (2005) Late Quaternary paleoceanographic changes in the Bering Sea and the western subarctic Pacific based on radiolarian assemblage. Deep-Sea Res II 52:2131–2149

    Article  Google Scholar 

  • Ternois Y, Kawamura K, Keigwin L, Ohkouchi N, Nakatsuka T (2001) A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27,000 years. Geochim Cosmochim Acta 65:791–802

    Article  Google Scholar 

  • Uchida M, Ohkushi K, Kimoto K, Inagaki F, Ishimura T, Tsunogai U, TuZino T, Shibata Y (2009) Radiocarbon-based carbon source quantification of anomalous isotopic foraminifera in glacial sediments in the western North Pacific. Geochem Geophys Geosys 9:Q04N14. doi:10.1029/2006GC001558

    Article  Google Scholar 

  • Uchida M, Shibata Y, Yoneda M, Kobayashi T, Morita, M (2004) Technical progress of microscale radiocarbon analysis. Nuclear Instru Material Methods Phys Res-B 223–224:313–317

    Article  Google Scholar 

  • van Geen A, Zheng Y, Bernhard JM, Cannariato KG, Carriquiry J, Dean WE, Eakins BW, Ortiz JD, Pike J (2003) On the preservation of laminated sediments along the western margin of North America. Paleoceanography 18:1098. doi:10.1029/2003PA000911

    Article  Google Scholar 

  • Warner MJ, Roden GI (1995) Chlorofluorocarbon evidence for recent ventilation of the deep Bering Sea. Nature 373:409–412

    Article  Google Scholar 

  • Zheng Y, van Geen A, Anderson RF, Gardner JV, Dean WE (2000) Intensification of the northeast Pacific oxygen minimum zone during the Bølling-Allerød warm period. Paleoceanography 15:528–536

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boo-Keun Khim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khim, BK., Kim, S., Uchida, M. et al. High organic carbon deposition in the northern margin of the Aleutian Basin (Bering Sea) before the last deglaciation. Ocean Sci. J. 45, 203–211 (2010). https://doi.org/10.1007/s12601-010-0019-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-010-0019-y

Key words

Navigation