Skip to main content
Log in

Enhanced visible-light photoelectrochemical performance via chemical vapor deposition of Fe2O3 on a WO3 film to form a heterojunction

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A heterojunction photoanode of Fe2O3 loaded on a WO3 film on a fluorine-doped tin oxide substrate (FTO-WO3/Fe2O3) was prepared via a simple hydrothermal and chemical vapor deposition (CVD) growth method. The photoanode showed higher photoelectrochemical (PEC) water-splitting activity than that of the pristine FTO-WO3 under simulated sunlight because of the synergistic effect of Fe2O3 and WO3. The as-synthesized material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The photocurrent density was estimated by linear sweep voltammetry and further confirmed using intensity-modulated photocurrent spectra. Experiments demonstrated that the coated Fe2O3 enhanced the separation and migration efficiencies of the photoinduced electrons and holes, improving the PEC water-splitting properties. The FTO-WO3/Fe2O3 photoanode showed a 1.25 times enhancement in photocurrent density compared with FTO-WO3. This result suggests that facile chemical vapor deposition growth is an effective way to fabricate heterojunctions and improve the properties of WO3 photoanodes for PEC water-splitting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Choi J, Song T, Kwon J, Lee S, Han H, Roy N, Terashima C, Fujishima A, Paik U, Pitchaimuthu S. WO3 nanofibrous backbone scaffolds for enhanced optical absorbance and charge transport in metal oxide (Fe2O3, BiVO4) semiconductor photoanodes towards solar fuel generation. Appl Surf Sci. 2018;447(31):331.

    CAS  Google Scholar 

  2. Zhu T, Chong MN, Chan ES. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review. Chemsuschem. 2014;7(11):2974.

    CAS  Google Scholar 

  3. Yuan K, Cao Q, Li X, Chen H, Deng Y, Wang Y, Luo W, Lu H, Zhang D. Synthesis of WO3@ZnWO4@ZnO–ZnO hierarchical nanocactus arrays for efficient photoelectrochemical water splitting. Nano Energy. 2017;41:543.

    CAS  Google Scholar 

  4. Xu S, Fu D, Song K, Wang L, Yang Z, Yang W, Hou H. One-dimensional WO3/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Chem Eng J. 2018;349(1):368.

    CAS  Google Scholar 

  5. Zeng Q, Li J, Li L, Bai J, Xia L, Zhou B. Synthesis of WO3/BiVO4 photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3 film for efficient photoelectrocatalytic water splitting and organic pollutant degradation. Appl Catal B. 2017;217(15):21.

    CAS  Google Scholar 

  6. Hameed A, Gondal MA, Yamani ZH. Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catal Commun. 2004;5(11):715.

    CAS  Google Scholar 

  7. Li W, Li J, Wang X, Chen Q. Preparation and water-splitting photocatalytic behavior of S-doped WO3. Appl Surf Sci. 2012;263(15):157.

    CAS  Google Scholar 

  8. Wang C, Zhang X, Yuan B, Wang Y, Sun P, Wang D, Wei Y, Liu Y. Multi-heterojunction photocatalysts based on WO3 nanorods: structural design and optimization for enhanced photocatalytic activity under visible light. Chem Eng J. 2014;237(1):29.

    CAS  Google Scholar 

  9. Rahimnejad S, He JH, Pan F, Lee X, Chen W, Wu K, Xu G. Enhancement of the photocatalytic efficiency of WO3 nanoparticles via hydrogen plasma treatment. Mater Res Express. 2014;1(4):045044.

    Google Scholar 

  10. Su J, Guo L, Bao N, Grimes C. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 2011;11(5):1928.

    CAS  Google Scholar 

  11. Cao J, Luo B, Lin H, Xu B, Chen S. Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties. Appl Catal B. 2012;111(12):288.

    Google Scholar 

  12. Shamaila S, Sajjad AKL, Chen F, Zhang J. WO3/BiOCl, a novel heterojunction as visible light photocatalyst. J Colloid Interface Sci. 2011;356(2):465.

    CAS  Google Scholar 

  13. Liu Y, Wygant BR, Kawashima K, Mabayoje O, Hong T, Lee S, Lin J, Kim J, Yubuta K, Li W, Li J, Mullins C. Facet effect on the photoelectrochemical performance of a WO3/BiVO4 heterojunction photoanode. Appl Catal B. 2019;245(15):227.

    CAS  Google Scholar 

  14. Liu Y, Wygant BR, Mabayoje O, Lin J, Kawashima K, Kim J, Li W, Li J, Mullins C. Interface engineering and its effect on WO3-based photoanode and tandem cell. ACS Appl Mater Inter. 2018;10(15):12639.

    CAS  Google Scholar 

  15. Faraji M, Yousefi M, Yousefzadeh S, Zirak M, Naseri N, Jeon T, Choi W, Moshfegh A. Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ Sci. 2019;12(1):59.

    CAS  Google Scholar 

  16. Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai S. Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C. 2015;25:1.

    CAS  Google Scholar 

  17. Haussener S, Xiang C, Spurgeon JM, Ardo S, Lewis N, Weber A. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ Sci. 2012;5(12):9922.

    CAS  Google Scholar 

  18. Park HG, Holt JK. Recent advances in nanoelectrode architecture for photochemical hydrogen production. Energy Environ Sci. 2010;3(8):1028.

    CAS  Google Scholar 

  19. Qorbani M, Naseri N, Moradlou O, Azimirad R, Moshfegh A. How CdS nanoparticles can influence TiO2 nanotube arrays in solar energy applications? Appl Catal B. 2015;162:210.

    CAS  Google Scholar 

  20. Shinde PS, Annamalai A, Kim JH, Choi SH, Lee JS, Jang J. Exploiting the dynamic Sn diffusion from deformation of FTO to boost the photocurrent performance of hematite photoanodes. Sol Energy Mater Sol Cells. 2015;141:71.

    CAS  Google Scholar 

  21. Zhan F, Yang Y, Liu W, Wang K, Li W, Li J. Facile synthesis of FeOOH quantum dots modified ZnO nanorods films via a metal-solating process. ACS Sustain Chem Eng. 2018;6(6):7789.

    CAS  Google Scholar 

  22. Senthil RA, Priya A, Theerthagiri J, Selvi A, Nithyadharseni P, Madhavan J. Facile synthesis of α-Fe2O3/WO3 composite with an enhanced photocatalytic and photo-electrochemical performance. Ionics. 2018;24:3673.

    CAS  Google Scholar 

  23. Yu CL, Chen JC, Zhou WQ, Wei LF, Fan Q. Grinding calcination preparation of WO3/BiOCl heterostructures with enhanced visible light photocatalytic activity. Mater Res Innov. 2015;19(1):54.

    CAS  Google Scholar 

  24. Katsumata K, Motoyoshi R, Matsushita N, Okada K. Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas. J Hazard Mater. 2013;260(15):475.

    CAS  Google Scholar 

  25. Mirzaei A, Janghorban K, Hashemi B, Bonyani M, Leonardi SG, Neri G. Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by Pechini sol–gel method. Ceram Int. 2016;42(5):6136.

    CAS  Google Scholar 

  26. Mirzaei A, Janghorban K, Hashemi B, Bonavita A, Bonyani M, Leonardi SG, Neri G. Synthesis, characterization and gas sensing properties of Ag@α-Fe2O3 core–shell nanocomposites. Nanomaterials. 2015;5(2):737.

    CAS  Google Scholar 

  27. Xue D, Zong F, Zhang J, Lin X, Li Q. Synthesis of Fe2O3/WO3 nanocomposites with enhanced sensing performance to acetone. Chem Phys Lett. 2019;716:61.

    CAS  Google Scholar 

  28. Bai S, Yang X, Liu C, Xiang X, Luo R, He J, Chen A. An integrating photoanode of WO3/Fe2O3 heterojunction decorated with NiFe-LDH to improve PEC water splitting efficiency. ACS Sustain Chem Eng. 2018;6(10):12906.

    CAS  Google Scholar 

  29. Wang S, Chen H, Gao G, Butburee T, Lyu M, Thaweesak S, Yun J, Du A, Liu G, Wang L. Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano Energy. 2016;24:94.

    CAS  Google Scholar 

  30. Ma XH, Feng XY, Song C, Zou BK, Ding CX, Yu Y, Chen CH. Facile synthesis of flower-like and yarn-like α-Fe2O3 spherical clusters as anode materials for lithium-ion batteries. Electrochim Acta. 2013;93(30):131.

    CAS  Google Scholar 

  31. Chen Y, Gao N, Jiang J. Surface matters: enhanced bactericidal property of core–shell Ag–Fe2O3 nanostructures to their heteromer counterparts from one-pot synthesis. Small. 2013;9(19):3242.

    CAS  Google Scholar 

  32. Rao PM, Zheng X. Unique magnetic properties of single crystal γ-Fe2O3 nanowires synthesized by flame vapor deposition. Nano Lett. 2011;11(6):2390.

    CAS  Google Scholar 

  33. Lee CW, Kim SG, Lee JS. Synthesis of metal oxide hollow nanoparticles by chemical vapor condensation process. Key Eng Mater. 2006;317:219.

    Google Scholar 

  34. Lv F, Fu L, Giannelis EP, Qi G. Preparation of γ-Fe2O3/SiO2-capsule composites capable of using as drug delivery and magnetic targeting system from hydrophobic iron acetylacetonate and hydrophilic SiO2-capsule. Solid State Sci. 2014;34:49.

    CAS  Google Scholar 

  35. Suber L, Imperatori P, Ausanio G, Fabbri F, Hofmeister H. Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes. J Phys Chem B. 2005;109(15):7103.

    CAS  Google Scholar 

  36. Yin Z, Bu Y, Ren J, Chen S, Zhao D, Zou Y, Shen S, Yang D. Triggering superior sodium ion adsorption on (200) facet of mesoporous WO3 nanosheet arrays for enhanced supercapacitance. Chem Eng J. 2018;345(1):165.

    CAS  Google Scholar 

  37. Zhen C, Wu T, Kadi MW, Ismail L, Liu G, Cheng HM. Design and construction of a film of mesoporous single-crystal rutile TiO2 rod arrays for photoelectrochemical water oxidation. Chin J Catal. 2015;36(12):2171.

    CAS  Google Scholar 

  38. Tamilselvan A, Balakumar S, Sakar M, Nayek C, Murugavel P, Kumar KS. Role of oxygen vacancy and Fe–O–Fe bond angle in compositional, magnetic, and dielectric relaxation on Eu-substituted BiFeO3 nanoparticles. Dalton Trans. 2014;43(15):5731.

    CAS  Google Scholar 

  39. Kim JH, Jang YJ, Kim JH, Jang JK, Choi SH, Lee JS. Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting. Nanoscale. 2015;7(45):19144.

    CAS  Google Scholar 

  40. Wang G, Ling Y, Wang H, Yang X, Wang C, Zhang JZ, Li Y. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ Sci. 2012;5(3):6180.

    CAS  Google Scholar 

  41. Hou Y, Zuo F, Dagg AP, Liu J, Feng P. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv Mater. 2014;26(29):5043.

    CAS  Google Scholar 

  42. Jin J, Yu J, Guo D, Cui C, Ho W. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small. 2015;11(39):5262.

    CAS  Google Scholar 

  43. Wang CW, Yang S, Fang WQ, Liu P, Zhao H, Yang HG. Engineered hematite mesoporous single crystals drive drastic enhancement in solar water splitting. Nano Lett. 2015;16(1):427.

    Google Scholar 

  44. Guo X, Wang L, Tan Y. Hematite nanorods Co-doped with Ru cations with different valence states as high performance photoanodes for water splitting. Nano Energy. 2015;16:320.

    CAS  Google Scholar 

  45. Tilley SD, Cornuz M, Sivula K, Grätzel M. Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chem Int Ed. 2010;49(36):6405.

    CAS  Google Scholar 

  46. Hou Y, Zuo F, Dagg A, Feng P. Visible light-driven α-Fe2O3 nanorod/graphene/BiV1–xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 2012;12(12):6464.

    CAS  Google Scholar 

  47. Steinmiller EMP, Choi KS. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc Natl Acad Sci USA. 2009;106(49):20633.

    CAS  Google Scholar 

  48. Dai G, Yu J, Liu G. Synthesis and enhanced visible-light photoelectrocatalytic activity of p–n junction BiOI/TiO2 nanotube arrays. J Phys Chem C. 2011;115(15):7339.

    CAS  Google Scholar 

  49. Yu J, Liao B, Zhang X. Fabrication of 3D ZnO/CuO nanotrees and investigation of their photoelectrochemical properties. Chin J Rare Met. 2018;42(5):449.

    Google Scholar 

  50. Wang B, Tian W. Tellurium-based alloy used as evaporator source for solar-blind photocathode. Chin J Rare Met. 2018;42(5):503.

    Google Scholar 

  51. Cheng Z, Wang W, Yang L, Xu Z, Ji Z, Huang S. Preparation of La–TiO2 and photocatalytic degradation of petrochemical secondary effluent. Chin J Rare Met. 2018;42(9):950.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51672143 and 51808303), Shandong Province Natural Science Foundation (ZR2019BEE027, ZR2017MEM018, ZR2018BEM002), Taishan Scholars Program of Shandong Province, Outstanding Youth of Natural Science in Shandong Province (JQ201713) and Australian Research Council Discovery Project (No. 170103317).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Sun or Yuan-Yuan Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YF., Zhu, YK., Lv, CX. et al. Enhanced visible-light photoelectrochemical performance via chemical vapor deposition of Fe2O3 on a WO3 film to form a heterojunction. Rare Met. 39, 841–849 (2020). https://doi.org/10.1007/s12598-019-01311-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01311-5

Keywords

Navigation