Skip to main content
Log in

Facile sonochemical synthesis and photocatalysis of Ag nanoparticle/ZnWO4-nanorod nanocomposites

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A facile sonochemical method was developed to synthesize metallic Ag spherical nanoparticles on the surface of ZnWO4 nanorods by forming heterostructure Ag/ZnWO4 nanocomposites. The Ag/ZnWO4 nanocomposites were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The experimental results showed that fcc metallic Ag nanoparticles were supported on surface of monoclinic sanmartinite ZnWO4 nanorods. The Ag 3d3/2 and Ag 3d5/2 peaks have well-separated binding energies of 6.00 eV, certifying the existence of metallic Ag. The Ag/ZnWO4 nanocomposites were evaluated for photodegradation of methylene blue (MB) induced by ultraviolet–visible (UV-Vis) radiation. In this research, heterostructure 10 wt% Ag nanoparticle/ZnWO4-nanorod composites have the highest photocatalytic activity of 99% degradation of MB within 60 min. The increase in photocatalytic activity was the result of photoinduced electrons in conduction band of ZnWO4 that effectively diffused to metallic Ag spherical nanoparticles and the inhibition of electron–hole recombination process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xiao FX, Liu B. Plasmon-dictated photo-electrochemical water splitting for solar-to-chemical energy conversion: current status and future perspectives. Adv Mater Interfaces. 2018;5(6):1701098.

    Article  Google Scholar 

  2. Zeng Z, Chen S, Tan TTY, Xiao FX. Graphene quantum dots (GQDs) and its derivatives for multifarious photocatalysis and photoelectrocatalysis. Catal Today. 2018;315:171.

    Article  Google Scholar 

  3. Zhang J, Xiao FX. Modulation of interfacial charge transfer by self-assembly of single-layer graphene enwrapped one-dimensional semiconductors toward photoredox catalysis. J Mater Chem A. 2017;5(45):23681.

    Article  Google Scholar 

  4. Yu C, Yu JC. Sonochemical fabrication, characterization and photocatalytic properties of Ag/ZnWO4 nanorod catalyst. Mater Sci Eng B. 2009;164(1):16.

    Article  Google Scholar 

  5. Zheng Y, Zheng L, Zhan Y, Lin X, Zheng Q, Wei K. Ag/ZnO Heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg Chem. 2007;46(17):6980.

    Article  Google Scholar 

  6. Phuruangrat A, Putdum S, Dumrongrojthanath P, Ekthammathat N, Thongtem S, Thongtem T. Enhanced properties for visible-light-driven photocatalysis of Ag nanoparticle modified Bi2MoO6 nanoplates. Mater Sci Semicond Process. 2015;34:175.

    Article  Google Scholar 

  7. Jonjana S, Phuruangrat A, Thongtem S, Wiranwetchayan O, Thongtem T. Preparation and characterization of Ag3VO4/Bi2MoO6 nanocomposites with highly visible-light-induced photocatalytic properties. Mater Lett. 2016;180:93.

    Article  Google Scholar 

  8. Amouzegar Z, Naghizadeh R, Rezaie HR, Ghahari M, Aminzare M. Microwave engineering of ZnWO4 nanostructures: towards morphologically favorable structures for photocatalytic activity. Ceram Int. 2015;41(7):8352.

    Article  Google Scholar 

  9. Dietl T, Ohno H, Matsukuru F, Cibrt J, Ferrand D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 2010;287(5455):1019.

    Article  Google Scholar 

  10. Huang G, Zhang C, Zhu Y. ZnWO4 photocatalyst with high activity for degradation of organic contaminants. J Alloys Compd. 2007;432(1–2):269.

    Article  Google Scholar 

  11. Lu J, Liu M, Zhou S, Zhou X, Yang Y. Electrospinning fabrication of ZnWO4 nanofibers and photocatalytic performance for organic dyes. Dyes Pigments. 2017;136:1.

    Article  Google Scholar 

  12. Shi R, Wang Y, Li D, Xu J, Zhu Y. Synthesis of ZnWO4 nanorods with [100] orientation and enhanced photocatalytic properties. Appl Catal B. 2010;100(1–2):173.

    Article  Google Scholar 

  13. Gao B, Fan H, Zhang X, Song L. Template-free hydrothermal synthesis and high photocatalytic activity of ZnWO4 nanorods. Mater Sci Eng B. 2012;177(13):1126.

    Article  Google Scholar 

  14. Song C, Lin Y, Wang D, Hu Z. Facile synthesis of Ag/ZnO microstructures with enhanced photocatalytic activity. Mater Lett. 2010;64(14):1595.

    Article  Google Scholar 

  15. Xiao FX, Liu B. In situ etching-induced self-assembly of metal cluster decorated one-dimensional semiconductors for solar-powered water splitting: unraveling cooperative synergy by photoelectrochemical investigations. Nanoscale. 2017;9(43):17118.

    Article  Google Scholar 

  16. Zeng Z, Xiao FX, Phan H, Chen S, Yu Z, Wang R, Nguyen TQ, Tan TTY. Unraveling the cooperative synergy of zero-dimensional graphene quantum dots and metal nanocrystals enabled by layer-by-layer assembly. Mater Chem A. 2018;6(4):1700.

    Article  Google Scholar 

  17. Zeng Z, Li YB, Chen S, Chen P, Xiao FX. Insight into the charge transport correlation in Aux clusters and graphene quantum dots deposited on TiO2 nanotubes for photoelectrochemical oxygen evolution. J Mater Chem A. 2018;6(24):11154.

    Article  Google Scholar 

  18. Arin J, Dumrongrojthanath P, Yayapao O, Phuruangrat A, Thongtem S, Thongtem T. Synthesis, characterization and optical activity of La-doped ZnWO4 nanorods by hydrothermal method. Superlattices Microstruct. 2014;67:197.

    Article  Google Scholar 

  19. Siriwong P, Thongtem T, Phuruangrat A, Thongtem S. Hydrothermal synthesis, characterization, and optical properties of wolframite ZnWO4 nanorods. CrystEngComm. 2011;13(5):1564.

    Article  Google Scholar 

  20. Amouzegar Z, Naghizadeh R, Rezaie HR, Ghahari M, Aminzare M. Cubic ZnWO4 nano-photocatalysts synthesized by the microwave-assisted precipitation technique. Ceram Int. 2015;41(1):1743.

    Article  Google Scholar 

  21. Wang Y, Liping L, Li G. Solvothermal synthesis, characterization and photocatalytic performance of Zn-rich ZnWO4 nanocrystals. Appl Surf Sci. 2017;393:159.

    Article  Google Scholar 

  22. Al-Hadeethi Y, Umar A, Ibrahim AA, Al-Heniti SH, Kumar R, Baskoutas S, Raffah BM. Synthesis, characterization and acetone gas sensing applications of Ag-doped ZnO nanoneedles. Ceram Int. 2017;43(9):6765.

    Article  Google Scholar 

  23. Zhan S, Zhou F, Huang N, Liu Y, He Q, Tian Y, Yang Y, Ye F. Synthesis of ZnWO4 electrode with tailored facets: deactivating the microorganisms through photoelectrocatalytic methods. Appl Surf Sci. 2017;391:609.

    Article  Google Scholar 

  24. Liu Z, Tian J, Zeng D, Yu C, Zhu L, Huang W, Yang K, Li D. A facile microwave-hydrothermal method to fabricate B doped ZnWO4 nanorods with high crystalline and highly efficient photocatalytic activity. Mater Res Bull. 2017;94:298.

    Article  Google Scholar 

  25. Huang G, Shi R, Zhu Y. Photocatalytic activity and photoelectric performance enhancement for ZnWO4 by fluorine substitution. J Mol Catal A. 2011;348(1–2):100.

    Article  Google Scholar 

  26. Osotsi MI, Macharia DK, Zhu B, Wang Z, Shen X, Liu Z, Zhang L, Chen Z. Synthesis of ZnWO4-x nanorods with oxygen vacancy for efficient photocatalytic degradation of tetracycline. Prog Nat Sci Mater Int. 2018;28(4):408.

    Article  Google Scholar 

  27. Xu M, Wang Y, Geng J, Jing D. Photodecomposition of NOx on Ag/TiO2 composite catalysts in a gas phase reactor. Chem Eng J. 2017;307:181.

    Article  Google Scholar 

  28. Wang T, Wei J, Shi H, Zhou M, Zhang Y, Chen Q, Zhang Z. Preparation of electrospun Ag/TiO2 nanotubes with enhanced photocatalytic activity based on water/oil phase separation. Physica E. 2017;86:103.

    Article  Google Scholar 

  29. Li J, Chen W, Yu H, Wu B, Huang W, Wang M, Huang S, Lin W, Zhang L, Li S. Contact potential barriers and characterization of Ag-doped composite TiO2 nanotubes. J Phys Chem Solids. 2014;75(4):505.

    Article  Google Scholar 

  30. Kundu S, Ma L, Chen Y, Liang H. Microwave assisted swift synthesis of ZnWO4 nanomaterials: material for enhanced photo-catalytic activity. J Photochem Photobiol A. 2017;346:249.

    Article  Google Scholar 

  31. Phuruangrat A, Dumrongrojthanath P, Thongtem S, Thongtem T. Hydrothermal synthesis of I-doped Bi2WO6 for using as a visible-light-driven photocatalyst. Mater Lett. 2018;224:67.

    Article  Google Scholar 

  32. Jonjana S, Phuruangrat A, Thongtem T, Kuntalue B, Thongtem S. Decolorization of rhodamine B photocatalyzed by Ag3PO4/Bi2WO6 nanocomposites under visible radiation. Mater Lett. 2018;218:146.

    Article  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand for providing financial support through the contact No. SCI610022S, and Center of Excellence in Materials Science and Technology, Chiang Mai University under the administration of Materials Science Research Center, Faculty of Science, Chiang Mai University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anukorn Phuruangrat or Titipun Thongtem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumrongrojthanath, P., Phuruangrat, A., Thongtem, S. et al. Facile sonochemical synthesis and photocatalysis of Ag nanoparticle/ZnWO4-nanorod nanocomposites. Rare Met. 38, 601–608 (2019). https://doi.org/10.1007/s12598-019-01255-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01255-w

Keywords

Navigation