Skip to main content
Log in

Pole to equator temperature gradient for coniacian time, late cretaceous: Oxygen and carbon isotopic data on the Koryak upland and Hokkaido

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The purpose of this study was to estimate the Coniacian latitudinal thermal gradient in the Northern Hemisphere. Both hemipelagic (ammonoids) and benthic (brachiopods and bivalves) δ 18O and δ 13C records were used. They originated from Coniacian shallow-water sequences across a wide range of paleolatitudes, from the Koryak upland (northern Kamchatka, Russian Far East) in the north, to Hokkaido (Japan) in the south. Among Coniacian ammonoids, both migrants from Hokkaido living in high latitudes (Kamchatka) and endemic forms dwelling in middle-low latitudes (Hokkaido) indicate seemingly close optimal growth temperatures. Nevertheless, certain differences in climatic conditions, prevailing during high-latitude coldest seasons, undoubtedly provoked growth cessation in some groups of ammonites. Our isotopic study suggests latitudinal temperature changes of only 0.12 °C per degree of latitude for the Northern Hemisphere in Coniacian times, while the average annual temperature in North Kamchatka seems about 3.3 °C lower than that in Hokkaido.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Alabushev, A. I., 1989a. Morphogenesis of Albian and Early Cenomanian Ammonitids of the North-East USSR. Severo-Vostochnyj Kompleksnyj Nauchno-Issledovatelskij Institut Dalnevostochnogo Otdeleniya Rossijskoj Akademii Nauk, Magadan. 104 (in Russian)

    Google Scholar 

  • Alabushev, A. I., 1989b. Scaphitids and Some Other Late Cretaceous Ammonoids of Far East. Severo-Vostochnyj Kompleksnyj Nauchno-Issledovatelskij Institut Akademii Nauk SSSR, Magadan. 56 (in Russian)

    Google Scholar 

  • Alcala-Herrera, J. A., Grossman, E. L., Gartner, S., 1992. Nannofossil Diversity and Equitability and Fine-Fraction δ 13C across the Cretaceous/Tertiary Boundary at Walvis Ridge Leg 74, South Atlantic. Marine Micropaleontology, 20: 77–88

    Article  Google Scholar 

  • Anderson, T. F., Arthur, M. A., 1983. Stable Isotopes of Oxygen and Carbon and Their Application to Sedimentologic and Palaeoenvironmental Problems: Stable Isotopes in Sedimentary Geology. Society of Economic Paleontollogists and Mineralogists (SEPM) Short Course, 10: 1–151

    Google Scholar 

  • Baraboshkin, E. Y., 2007. Early Cretaceous Straits of the Northern Hemisphere. In: Baraboshkin, E. Y., ed., The Straits of the Northern Hemishere during Cretaceous and Palaeogene. Geologicheskij Fakultet Moskovskogo Gosudarstvennogo Universiteta, Moscow. 11–59 (in Russian)

    Google Scholar 

  • Barrera, E., 1994. Global Environmental Changes Preceding the Cretaceous-Tertiary Boundary: Early-Late Maastrichtian Transition. Geology, 22(10): 877–880, doi:10.1130/0091-7613(1994)022<0877:GECPTC>2.3.CO;2

    Article  Google Scholar 

  • Boersma, A., Shackleton, N. J., 1981. Oxygen and Carbon Isotope Variations and Planktonic-Foraminifer Depth Habitats, Late Cretaceous to Paleocene, Central Pacific, Deep Sea Drilling Project Sites 463 and 465. In: Thiede, J., Vollier, T. L., eds., Initial Reports of the Deep Sea Drilling Project, 62: 513–526

  • Bowen, R., 1969. Paleotemperature Analysis. Nedra, Leningrad. 208 (in Russian)

    Google Scholar 

  • Clayton, R. N., Stevens, G. R., 1968. Paleotemperatures of New Zealand Belemnites. In: Stable Isotopes in Oceanographic Studies and Paleotemperatures, Tongiorgi (Spoleto, 1965). Pisa, Italy. 199–204

  • Coplen, T. B., Kendall, C., Hopple, J., 1983. Comparison of Stable Isotope Reference Samples. Nature, 302(5905): 236–238

    Article  Google Scholar 

  • Coplen, T. B., Schlanger, S. O., 1973. Oxygen and Carbon Isotope Studies of Carbonate Sediments from Site 167, Magellan Rise, Leg 17. In: Edgar, N. T., Saunders, J. B., eds., Initial Reports of the Deep Sea Drilling Project, 17: 505–509

  • Corfield, R. M., Cartlidge, J. E., Premoli-Silva, I., et al., 1991. Oxygen and Carbon Isotope Stratigraphy of the Paleogene and Cretaceous Limestones in the Bottaccione Gorge and the Contessa Highway Sections, Umbria, Italy. Terra Nova, 3: 414–422, doi:10.1111/j.1365-3121.1991.tb00171.x

    Article  Google Scholar 

  • Davis, T. T., Hooper, P. R., 1963. The Determination of the Calcite: Aragonite Ratio in Mollusc Shells by X-Ray Diffraction. Mineralogical Magazine, 33(262): 608–612

    Article  Google Scholar 

  • Douglas, R. G., Savin, S. M., 1975. Oxygen and Carbon Isotope Analyses of Tertiary and Cretaceous Microfossils from Shatsky Rise and Other Sites in the North Pacific Ocean. In: Larson, R. L., Moberly, R., eds., Initial Reports of the Deep Sea Drilling Project, 32: 509–520

  • Erbacher, J., 1994. Entwicklung und Palaeoozeanographie Mittelkretazischer Radiolarien der Westlichen Tethys (Italien) und des Nordatlantiks. Tuebinger Micropalaeontologisches Mitteilungen, 12: 1–139 (in German)

    Google Scholar 

  • Gale, A. S., 2000. The Cretaceous World. In: Culver, S. J., Rawson, P. F., eds., Biotic Response to Global Change, The Last 145 Million Years. Cambridge University Press, London. 4–19

    Chapter  Google Scholar 

  • Golbert, A. V., 1987. Foundations of Regional Paleoclimatology. Nedra, Moscow. 223 (in Russian)

    Google Scholar 

  • Grossman, E. L., Ku, T. L., 1986. Oxygen and Carbon Isotope Fractionation in Biogenic Aragonite: Temperature Effects. Chemical Geology, 59: 59–74

    Article  Google Scholar 

  • Hasegawa, T., Hatsugai, T., 2000. Carbon-Isotope Stratigraphy and Its Chronostratigraphic Significance for the Cretaceous Yezo Group, Kotanbetsu Area, Hokkaido, Japan. Paleontological Research, 4(2): 95–106

    Google Scholar 

  • Hasegawa, T., Pratt, L. M., Maeda, H., et al., 2003. Upper Cretaceous Stable Carbon Isotope Stratigraphy of Terrestrial Organic Matter from Sakhalin, Russian Far East: A Proxy for the Isotopic Composition of Paleoatmospheric CO2. Palaeoclimatology, Palaeoclimatology, Palaeoecology, 189(1–2): 97–115

    Article  Google Scholar 

  • Hay, W., 2010. Modeling Cretaceous Climate. 2010 GSA Genver Annual Meeting (31 Oct.–3 Nov. 2010). Abstracts weith Programs, 42(5): 87–91

    Google Scholar 

  • Herman, A. B., 2004. Quantative Paleobotanical Data: Constraits on Late Cretaceous Climates in Eurasia and Alaska. Trudy Geologicheskogo InstitutaRossijuskoj Akademii Nauk, 550: 80–104 (in Russian)

    Google Scholar 

  • Herman, A. V., Spicer, R. A., 1996. Paleobotanical Evidence for a Warm Cretaceous Arctic Ocean. Nature, 380(6572): 330–333, doi:10.1038/380330a0

    Article  Google Scholar 

  • Huber, B. T., 1998. Tropical Paradise at the Cretaceous Poles? Science, 282(5397): 2199–2200, doi:10.1126/science.282.5397.2199

    Article  Google Scholar 

  • Huber, B. T., Hodell, D. A., Hamilton, C. P., 1995. Middle-Late Cretaceous Climate of the Southern High Latitudes: Stable Isotopic Evidence for Minimal Equator-to-Pole Thermal Gradients. Geological Society of America Bulletin, 107(10): 1164–1191, doi:10.1130/0016-7606(1995)107<1164:MLCCOT>2.3.CO;2

    Article  Google Scholar 

  • Huber, B. T., Norris, R. D., MacLeod, K. G., 2002. Deep-Sea Paleotemperat of Extreme Warmth during the Cretaceous. Geology, 30(2): 123–126, doi:10.1016/S0096-3003(97)10031-5

    Article  Google Scholar 

  • Jenkins, H. C., Gale, A. S., Corfield, R. M., 1994. Carbon-Isotope and Oxygen-Isotope Stratigraphy of the English Chalk and Italian Scaglia and Its Palaeoclimatic Significance. Geological Magazine, 131(1): 1–34

    Article  Google Scholar 

  • Kadama, K., Maeda, H., Shigeta, Y., et al., 2000. Magnetostratigraphy of Upper Cretaceous Strata in South Sakhalin, Russian Far East. Cretaceous Research, 21(4): 469–478, doi:10.1006/CRES.2000.0219

    Article  Google Scholar 

  • Li, L., Keller, G., 1999. Variability in Late Cretaceous Climate and Deep Waters: Evidence from Stable Isotopes. Marine Geology, 161: 171–190

    Article  Google Scholar 

  • Lowenstam, H. A., Epstein, S., 1954. Paleotemperatures of the Post-Aptian Cretaceous as Determined by the Oxygen Isotope Method. Journal of Geology, 62: 207–248

    Article  Google Scholar 

  • Naidin, D. P., 2007. Epicontinental Seas of North America and Eurasia. Late Cretaceous Meridional Seaway. In: Baraboshkin, E. Y., ed., The Straits of the Northern Hemishere during Cretaceous and Palaeogene. Geologicheskij Fakultet Moskovskogo Gosudarstvennogo Universiteta, Moscow. 60–79 (in Russian)

    Google Scholar 

  • Naidin, D. P., Kiyashko, S. I., 1994. Geochemical Characteristics of the Cenomanian-Turonian Boundary Transition Beds on Mountainous Crimea. Paper 2. Carbon and Oxygen Isotopic Composition: Conditions for Organic Carbon Origin. Bulleten Moskovskogo Obschestva Ispytatelei Prirody, Otdel Geologii, 69(2): 59–74 (in Russian)

    Google Scholar 

  • Pokhialainen, V. P., 1985. Inocrramus Population Structure. In: Pokhialainen, V. P., ed., Mesozoic Bivalve and Cephalopod Mollusks of North-East USSR. Severo-Vostochnyj Kompleksnyj Nauchno-Issledovatelskij Institut, Magadan. 91–103 (in Russian)

    Google Scholar 

  • Rawson, P. F., 2000. The Response of Cretaceous Cephalopods to Global Change. In: Culver, S. J., Rawson, P. F., eds., Biotic Response to Global Change, The Last 145 Million Years. Cambridge University Press, London. 97–106

    Chapter  Google Scholar 

  • Savin, S. M., 1977. The History of the Earth’s Surface Temperature during the Past 100 Million Years. Annual Review of Earth and Planetary Sciences, 5: 319–355

    Article  Google Scholar 

  • Shigeta, Y., Maeda, H., Tanabe, K., et al., 1999. Cretaceous Ammonites from North Kamchatka, Russia. Journal of Geological Society of Japan, 105: 7–8 (in Japanese with English Abstract)

    Google Scholar 

  • Spicer, R. A., 2000. Leaf Physiognomy and Climate Change. In: Culver, S. J., Rawson, P. F., eds., Biotic Response to Global Change, the Last 145 Million Years. Cambridge University Press, London. 244–264

    Chapter  Google Scholar 

  • Spicer, R. A., Ahlberg, A., Herman, A. B., et al., 2002. Palaeoenvironment and Ecology of the Middle Cretaceous Grebenka Flora of Northeastern Asia. Palaeography, Palaeoclimatology, Palaeoecology, 184: 65–105

    Article  Google Scholar 

  • Teiss, R. V., Naidin, D. P., 1973. Paleotermometry and Oxygen-Isotopic Composition in Organogenic Carbonates. Nauka, Moskva. 255 (in Russian)

    Google Scholar 

  • Teiss, R. V., Chupakhin, M. S., Naidin, D. P., 1960. Temperature Determination from the Oxygen-Isotopic Composition of Biogenic Calcite. In: International Geological Congress, 22 Session, 1960. Problem 1: Geochemical Cycles. Gosudarstvennoye Nauchno-Tekhnicheskoye Izdatelstvo Literatury po Geologii i Okhrane Nedr, Moscow. 146–156 (in Russian)

    Google Scholar 

  • Toshimitsu, S., 1988. Biostratigraphy of the Upper Cretaceous Santonian Stage in Northwestern Hokkaido. Memoirs Faculty of Science, Kyushu University, Ser. D, Geol., 26(2): 125–192

    Google Scholar 

  • Toshimitsu, S., Hirano, H., Matsumoto, T., 2000. Data Base and Species Diversity of the Japanese Cretaceous Ammonoids. In: First International Symposium of Carbon Cycle and Biodiversity Change during the Cretaceous. Programs and Abstracts. Waseda University, Tokyo. 54–55

    Google Scholar 

  • Veizer, J., 1974. Chemical Diagenesis of Belemnite Shells and Possible Consequences for Palaeotemperature Determinations. Neues Jahrburch für Geologie und Paläontologie, Abhandlungen, 147: 91–111

    Google Scholar 

  • Voigt, S., 2000. Stable Oxygen and Carbon Isotopes from Brachiopods of Southern England and North-Western Germany: Estimation of Upper Turonian Palaeotemperatures. Geological Magazine, 137(6): 687–703

    Article  Google Scholar 

  • Zachos, J. C., Arthur, M. A., 1986. Paleoceanography of the Cretaceous/Paleogene Boundary Event: Inferences from Stable Isotopic and Other Data. Paleoceanography, 1(1): 5–26

    Article  Google Scholar 

  • Zakharov, V. A., Kurushin, N. I., Pokhialaynen, V. P., 1996. Paleobiogeographic Criteria of Terrane Geodynamics of Northestern Asia in Mesozoic. Geologiya i Geophizika, 37(11): 1–22 (in Russian)

    Google Scholar 

  • Zakharov, Y. D., Boriskina, N. G., Ignatiev, A. V., et al., 1999. Palaeotemperature Curve for the Late Cretaceous of the Northwestern Circum-Pacific. Cretaceous Research, 20(6): 685–697, doi:10.1006/cres.1999.0175

    Article  Google Scholar 

  • Zakharov, Y. D., Boriskina, N. G., Popov, A. M., 2001. The Reconstruction of Late Paleozoic and Mesozoic Marine Environments from Isotopic Data (Evidence from North Eurasia). Dalnauka, Vladivostok. 112 (in Russian)

    Google Scholar 

  • Zakharov, Y. D., Shigeta, Y., Popov, A., et al., 2011. Cretaceous Climatic Oscillations in the Bering Area (Alaska and Koryak Upland): Isotopic and Palaeontological Evidence. Sedimentary Geology, 235(1–2): 122–131, doi:10.1016/j.sedgeo.2010.03.012

    Article  Google Scholar 

  • Zakharov, Y. D., Smyshlyaeva, O. P., Popov, A. M., et al., 2002. Oxygen and Carbon Isotope Composition of the Cretaceous Organogenic Carbonates of the Koryak Upland. Paper 2. Talovka River Basin. Tikhookeanskaya Geologiya, 21(5): 28–40 (in Russian)

    Google Scholar 

  • Zakharov, Y. D., Smyshlyeva, O. P., Tanabe, K., et al., 2005. Seasonal Temperature Fluctuations in the High Northern Latitudes during the Cretaceous Period: Isotopic Evidence from Albian and Coniacian Shallow-Water Invertebrates of the Talovka River Basin, Koryak Upland, Russian Far East. Cretaceous Research, 26(1): 113–132, doi:10.1016/j.cretres.2004.11.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri D. Zakharov.

Additional information

This study was supported by the International Field Expedition Programme of Japan (No. 10041109) and DVO RAN (No. 09-III-A-08-402).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, Y.D., Smyshlyaeva, O.P., Popov, A.M. et al. Pole to equator temperature gradient for coniacian time, late cretaceous: Oxygen and carbon isotopic data on the Koryak upland and Hokkaido. J. Earth Sci. 23, 19–32 (2012). https://doi.org/10.1007/s12583-012-0230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-012-0230-0

Key Words

Navigation