Skip to main content
Log in

Isotope geochemistry of volcanic rocks from the Barton Peninsula, King George Island, Antarctica

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

C, O, H, S and Sr isotopes were investigated to characterize the isotopic composition of the Paleocene-Eocene volcanic rocks in Barton Peninsula, King George Island, Antarctica. The analyzed samples of volcanic rocks cover a range from basalt to andesite. The δ 13C and δ 18O values of calcite in volcanic rocks range from −7.5‰ to −3.2‰ and 0.4‰ to 5.1‰, respectively. The homogenous δ 13Ccal and depleted δ 18Ocal values relative to primary magmatic values reflect the effect of high temperature alteration of volcanic rocks. The δ 18O of volcanic rocks ranges from −1.1‰ to 7.2‰, and the majority of values are significantly lower than those of primary magmatic values. The low δ 18OWR values are compatible with high temperature alteration. The initial values of 87Sr/86Sr of volcanic rocks span a narrow range from 0.703 312 to 0.703 504 which belong to the present mid-oceanic ridge basalt. The values of 87Sr/86Sr of volcanics in the Barton Peninsula are similar to those determined in the Fildes Peninsula, King George Island. The δDWR and H2O contents of volcanic rocks range from −74‰ to −66‰ and 0.67 wt.% to 2.74 wt.%, respectively. The higher δDWR and H2O wt.% of volcanic rocks relative to fresh basalts also result from high temperature alteration. Sulfur isotope compositions of the volcanic rocks range from −12.5‰ to −7.0‰; these values may represent fractionation accompanying partial oxidation of magmatic S or incorporation of some bacteriogenic sulfide. The low S contents and negative correlation with C and H2O reflect the formation of calcite and breakdown of sulfide as a result of high temperature water-rock interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Agrinier, P., Hekinian, R., Bideau, D., et al., 1995. O and H Stable Isotope Compositions of Oceanic Crust and Upper Mantle Rocks Exposed in the Hess Deep near the Galapagos Triple Junction. Earth and Planetary Science Letters, 136(3–4): 183–196

    Article  Google Scholar 

  • Alt, J. C., 1994. A Sulfur Isotopic Profile through the Troodos Ophiolite, Cyprus: Primary Composition and the Effects of Seawater Hydrothermal Alteration. Geochimica et Cosmochimica Acta, 58(7): 1825–1840

    Article  Google Scholar 

  • Alt, J. C., Shanks, W. C., Jakson, M. C., 1993. Cycling of Sulfur in Subduction Zones: The Geochemistry of Sulfur in the Mariana Island Arc and Back-Arc Trough. Earth and Planetary Science Letters, 119(4): 477–494

    Article  Google Scholar 

  • Armstrong, D. C., 1995. Acid Sulphate Alteration in a Magmatic Hydrothermal Environment, Barton Peninsula, King George Island, Antarctica. Mineralogical Magazine, 59: 429–441

    Article  Google Scholar 

  • Bindeman, I. N., Ponomareva, V. V., Bailey, J. C., et al., 2004. Volcanic Arc of Kamchatka: A Province with High-δ 18O Magma Sources and Large-Scale 18O/16O Depletion of the Upper Crust. Geochimica et Cosmochimica Acta, 68(4): 841–865

    Article  Google Scholar 

  • Birkenmajer, K., 1982. Late Cenozoic Phases of Block-Faulting on King George Island (South Shetland Islands, West Antarctica). Bulletin of the Polish Academy of Sciences: Earth Sciences, 30(1–2): 21–32

    Google Scholar 

  • Birkenmajer, K., Delitala, M. C., Narebski, W., et al., 1986. Geochronology of Tertiary Island Arc Volcanics and Glacigenic Deposits, King George Island, South Shetland Islands (West Antarctica). Bulletin of the Polish Academy of Sciences: Earth Sciences, 34(3): 257–273

    Google Scholar 

  • Birkenmajer, K., Francalanci, L., Peccerillo, A., 1991. Petrological and Geochemical Constraints on the Genesis of Mesozoic-Cenozoic Magmatism of King George Island, South Shetland Islands, Antarctica. Antarctic Science, 3(3): 293–308

    Article  Google Scholar 

  • Clayton, R. N., Mayeda, T. K., 1963. The Use of Bromine Pentafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis. Geochimica et Cosmochimica Acta, 27(1): 43–52

    Article  Google Scholar 

  • Davies, R. E. S., 1982. The Geology of the Marian Cove Area, King George Island and Tertiary Age for Its Supposed Jurassic Volcanic Rocks. British Antarctic Survey Bulletin, 51: 151–165

    Google Scholar 

  • DeHoog, J. C. M., Taylor, B. E., Van-Bergan, M. J., 2001. Sulfur Isotope Systematics of Basaltic Lavas from Indonesia: Implications for the Sulfur Cycle in Subduction Zones. Earth and Planetary Science Letters, 189(3–4): 237–252

    Article  Google Scholar 

  • Deines, P., 1989. Stable Isotope Variations in Carbonatites. In: Bell, K., ed., Carbonatites: Genesis and Evolution. Unwin Hyman, London. 301–359

    Google Scholar 

  • Dickin, A. P., 2005. Radogenic Isotope Geology. 2nd ed.. Cambridge University Press, Cambridge. 492

    Google Scholar 

  • Gao, Y., Hoefs, J., Przybilla, R., et al., 2006. A Complete Oxygen Isotope Profile through the Lower Oceanic Crust, ODP Hole 735B. Chemical Geology, 233(3–4): 217–234

    Article  Google Scholar 

  • Hamlyn, P. R., Keays, R. R., 1986. Sulfur Saturation and Second-Stage Melts: Application to the Bushveld Platinum Metal Deposits. Economic Geology, 81: 1431–1445

    Article  Google Scholar 

  • Hamlyn, P. R., Keays, R. R., Cameron, W. E., et al., 1985. Precious Metals in Magnesian Low-Ti Lavas: Implications for Metallogenesis and Sulfur Saturation in Primary Magmas. Geochimica et Cosmochimica Acta, 49(8): 1797–1811

    Article  Google Scholar 

  • Harmon, R. S., Hoefs, J., 1995. Oxygen Isotope Heterogeneity of the Mantle Deduced from Global 18O Systemaics of Basalts from Different Geotectonic Settings. Contrib. Mineral. Petrol., 120(1): 95–114

    Article  Google Scholar 

  • Hochstaedter, A. G., Gill, J. B., Kusakabe, M., et al., 1990. Volcanism in the Sumisu Rift, I. Major Element, Volatile, and Stable Isotope Geochemistry. Earth and Planetary Science Letters, 100(1–3): 179–194

    Article  Google Scholar 

  • Hur, S. D., Lee, J. I., Hwang, J., et al., 2001. K-Ar Age and Geochemistry of Hydrothermal Alteration in the Barton Peninsula, King George Island, Antarctica. Ocean Polar Research, 23(1): 11–21

    Google Scholar 

  • Hwang, J., Lee, J. I., 1998. Hydrothermal Alteration and Mineralization in the Granodioritic Stock of the Barton Peninsula, King George Island, Antarctica. Economic and Environmental Geology, 31(3): 171–183

    Google Scholar 

  • Kawahata, H., Kusakabe, M., Kikuchi, Y., 1987. Strontium, Oxygen, and Hydrogen Isotope Geochemistry of Hydrothermally Altered and Eeathered Rocks in DSDP Hole 504B, Costa Rica Rift. Earth and Planetary Science Letters, 85(4): 343–355

    Article  Google Scholar 

  • Kim, H., Choe, M. Y., Lee, J. I., et al., 2002. Thermal Metamorphism of Volcanic Rocks on Barton Peninsula, King George Island, Antarctica. Geosciences Journal, 6(4): 303–317

    Article  Google Scholar 

  • Kim, H., Lee, J. I., Choe, M. Y., et al., 2000. Geochronology Evidence for Early Cretaceous Volcanic Activity on Barton Peninsula, King George Island, Antarctica. Polar Research, 19(2): 251–260

    Article  Google Scholar 

  • Kyser, T. K., O’Neil, J. R., 1984. Hydrogen Isotope Systematics of Submarine Basalts. Geochimica et Cosmochimica Acta, 48(10): 2123–2133

    Article  Google Scholar 

  • Lee, J. I., Hur, S. D., Yoo, C. M., et al., 2002. Geological Map of Barton and Weaver Peninsulas, King George Island, Antarctica. Korea Ocean Research and Development Institute, Ansan. 30

    Google Scholar 

  • Lee, J. I., Hwang, J., Kim, H., et al., 1996. Subvolcanic Zoned Granitic Pluton in the Barton and Weaver Peninsulas, King George Island, Antarctica. Proceedings of the NIPR Symposium on Antarctic Geosciences, 9: 76–90

    Google Scholar 

  • Machado, A., Chemale, F., Conceicao, R. V., et al., 2005. Modeling of Subduction Components in the Genesis of the Meso-Cenozoic Igneous Rocks from the South Shetland Arc, Antarctica. Lithos, 82(3–4): 435–453

    Article  Google Scholar 

  • McCrea, J. M., 1950. On the Isotopic Chemistry of Carbonates and a Paleotemperaturc Scale. J. Chem. Phys., 18: 849–857

    Article  Google Scholar 

  • Nilsson, K., Peach, C. L., 1993. Sulfur Speciation, Oxidation State, and Sulfur Concentration in Backarc Magmas. Geochimica et Cosmochimica Acta, 57(15): 3807–3813

    Article  Google Scholar 

  • Nriagu, J. O., Rees, C. E., Mekhtiyeva, V. L., et al., 1991. Hydrosphere. In: Krouse, H. R., Grinenko, V. A., eds., Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment. SCOPE 43. John Wiley and Sons, Chichester. 177–265

    Google Scholar 

  • Ohmoto, H., Goldhaber, M. B., 1997. Sulfur and Carbon Isotopes. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons, New York. 517–611

    Google Scholar 

  • Park, B. K., 1989. Potassium-Argon Radiometric Ages of Volcanic and Plutonic Rocks from the Barton Peninsula, King George Island, Antarctica. Journal of the Geological Society of Korea, 25(4): 495–497

    Google Scholar 

  • Sakai, H., Casadevall, T. J., Moore, J. G., 1982. Chemistry and Isotope Ratios of Sulfur in Basalts and Volcanic Gases at Kilauea Volcano, Hawaii. Geochimica et Cosmochimica Acta, 46(5): 729–738

    Article  Google Scholar 

  • Seewald, J. S., Seyfried, W. E., 1990. The Effect of Temperature on Metal Mobility in Subseafloor Hydrothermal Systems: Constraints from Basalt Alteration Experiments. Earth and Planetary Science Letters, 101(2–4): 388–403

    Article  Google Scholar 

  • Sharp, Z. D., Atudorei, V., Durakiewicz, T., 2001. A Rapid Method for Determination of Hydrogen and Oxygen Isotope Ratios from Water and Hydrous Minerals. Chemical Geology, 178(1–4): 197–210

    Article  Google Scholar 

  • Shin, D., Lee, J. I., Hwang, J., et al., 2009. Hydrothermal Alteration and Isotopic Variations of Igneous Rocks in Barton Peninsula, King George Island, Antarctica. Geoscience Journal, 13(1): 103–112

    Article  Google Scholar 

  • Smellie, J. L., Pankhurst, R. J., Thomson, M. R. A., et al., 1984. The Geology of the South Shetland Islands: VI. Stratigraphy. Geochemistry and Evolution. British Antarctic Survey Scientific Report, 87: 85

    Google Scholar 

  • So, C. S., Yun, S. T., Park, M. E., 1995. Geochemistry of a Fossil Hydrothermal System at Barton Peninsula, King George Island. Antarctic Science, 7(1): 63–72

    Article  Google Scholar 

  • Stakes, D., Vanko, D. A., 1986. Multistage Hydrothermal Alteration of Gabbroic Rocks from the Failed Mathematician Ridge. Earth and Planetary Science Letters, 79(1–2): 75–92

    Article  Google Scholar 

  • Studley, S. A., Ripley, E. M., Elswick, E. R., et al., 2002. Analysis of Sulfides in Whole Rock Matrices by Elemental Analyzer-Continuous Flow Isotope Ratio Mass Spectrometry. Chemical Geology, 192(1–2): 141–148

    Article  Google Scholar 

  • Swart, P. K., Burns, S. J., Leder, J. J., 1991. Fractionation of the Stable Isotopes of Oxygen and Carbon in Carbon Dioxide during the Reaction of Calcite with Phosphoric Acid as a Function of Temperature and Technique. Chemical Geology, 86(2): 89–96

    Google Scholar 

  • Taylor, H. P., Frechen, J., Degens, E. T., 1967. Oxygen and Carbon Isotope Studies of Carbonatites from the Laacher See District, West Germany and the Alnoe District, Sweden. Geochimica et Cosmochimica Acta, 31(3): 407–430

    Article  Google Scholar 

  • Teagle, D. A. H., Alt, J. C., Chiba, H., et al., 1998. Strontium and Oxygen Isotopic Constraints on Fluid Mixing, Alteration and Mineralization in the TAG Hydrothermal Deposit. Chemical Geology, 149(1–2): 1–24

    Article  Google Scholar 

  • Tokarski, A. K., 1988. Structural Analysis of Barton Peninsula (King George Island, West Antarctica): An Example of Volcanic Arc Tectonics. Studia Geologica Polonica, 95: 53–63

    Google Scholar 

  • Ueda, A., Sakai, H., 1984. Sulfur Isotope Study of Quaternary Volcanic Rocks from the Japanese Islands Arc. Geochimica et Cosmochimica Acta, 48(9): 1837–1848

    Article  Google Scholar 

  • Vroon, P. Z., Lowry, D., Van-Bergen, M. J., et al., 2001. Oxygen Isotope Systematics of the Banda Arc: Low δ 18O Despite Involvement of Subducted Continental Material in Magma Genesis. Geochimica et Cosmochimica Acta, 65(4): 589–609

    Article  Google Scholar 

  • Willan, R. C. R., Armstrong, D. C., 2002. Successive Geothermal, Volcanic-Hydrothermal and Contact-Metasomatic Events in Cenozoic Volcanic-Arc Basalts, South Shetland Islands, Antarctica. Geological Magazine, 139: 209–231

    Article  Google Scholar 

  • Yeo, J. P., Lee, J. L., Hur, S. D., et al., 2004. Geochemistry of Volcanic Rocks in Barton and Weaver Peninsulas, King George Island, Antarctica: Implications for Arc Maturity and Correlation with Fossilized Volcanic Centers. Geoscience Journal, 8(1): 11–25

    Article  Google Scholar 

  • Yoo, C. M., Choe, M. Y., Jo, H. R., et al., 2001. Volcaniclastic Sedimentation of the Sejong Formation (Late Paleocene-Eocene), Barton Peninsula, King George Island, Antarctica. Ocean and Polar Research, 23(2): 97–107

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Hwang.

Additional information

This study was supported by the KOPRI Project (PP10030).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, J., Zheng, X., Ripley, E.M. et al. Isotope geochemistry of volcanic rocks from the Barton Peninsula, King George Island, Antarctica. J. Earth Sci. 22, 40–51 (2011). https://doi.org/10.1007/s12583-011-0156-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-011-0156-y

Key Words

Navigation