Skip to main content

Advertisement

Log in

In vitro exposure of Penicillium mycotoxins with or without a modified yeast cell wall extract (mYCW) on bovine macrophages (BoMacs)

  • Original Article
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

Penicillium mycotoxins (PMs) are contaminants that are frequently found in grain or crop-based silage for animal feed. Previously, we have characterized the potential immunotoxicity of the following PMs: citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA), and penicillic acid (PA) by using a bovine macrophage cell line (BoMacs). In the present study, cell proliferation was used as a bioassay endpoint to evaluate the efficacy of a modified yeast cell wall extract (mYCW), for preventing PM toxicity under various in vitro conditions such as the following: pH (3, 5, 7), incubation time (1, 2, 4, 6 h), percentage of mYCW (0.05, 0.1, 0.2, 0.5, 1.0 %), and PM concentration. mYCW was most effective in preventing the toxicity of 12.88 and 25.8 μM OTA at pH 3.0 (p < 0.0001), regardless of incubation time (p < 0.0001) and the percentage of mYCW (p < 0.0001). An incubation time of 6 h (p < 0.05) or 0.5 and 1.0 % mYCW (p < 0.0001) significantly improved the efficacy of mYCW for preventing CIT toxicity. In contrast, 0.5 and 1.0 % of mYCW appeared to exacerbate the PAT toxicity (p < 0. 0001). This effect on PAT toxicity was constantly observed with higher PAT concentrations, and it reached significance at a concentration of 0.70 μM (p < 0.0001). mYCW had no effect on PA toxicity. These results suggest that mYCW may reduce OTA toxicity and, to some extent, CIT toxicity at pH 3.0. Although PAT toxicity was increased by mYCW treatment, PAT is readily degraded during heat treatment and may therefore be dealt with using other preventative measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BoMacs:

Bovine macrophage cell line

CIT:

Citrinin

FBS:

Fetal bovine serum

GSH:

Glutathione

HCl:

Hydrogen chloride (HCl)

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

HPLC:

High-performance liquid chromatography

IC50:

Concentration that inhibits 50 % of cell proliferation

MPA:

Mycophenolic acid

MS:

Mass spectrometry

mYCW:

Modified yeast cell wall extract

NaOH:

Sodium hydroxide

OTA:

Ochratoxin A

PA:

Penicillic acid

PAT:

Patulin

PBS:

Sodium phosphate buffer

PM:

Penicillium mycotoxin

RPMI 1640:

Roswell Park Memorial Institute 1640 media

YCW:

Yeast cell wall

References

  • Bazin I, Faucet-Marquis V, Monje M-C et al (2013) Impact of pH on the stability and the cross-reactivity of ochratoxin A and citrinin. Toxins 5:2324–2340. doi:10.3390/toxins5122324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516. doi:10.1128/CMR.16.3.497-516.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boutrif E (1995) FAO programmes for prevention, regulation, and control of mycotoxins in food. Nat Toxins 3:322–326, discussion 341

    Article  CAS  PubMed  Google Scholar 

  • Braunberg RC, Gantt O, Barton C, Friedman L (1992) In vitro effects of the nephrotoxins ochratoxin A and citrinin upon biochemical function of porcine kidney. Arch Environ Contam Toxicol 22:464–470

    Article  CAS  PubMed  Google Scholar 

  • Briggs P, Hogan J, Reid R (1957) Effect of volatile fatty acids, lactic acid and ammonia on rumen pH in sheep. Aust J Agric Res 8:674. doi:10.1071/AR9570674

    Article  CAS  Google Scholar 

  • Bursian SJ, Mitchell RR, Yamini B et al (2004) Efficacy of a commercial mycotoxin binder in alleviating effects of ochratoxin A, fumonisin B1, moniliformin and zearalenone in adult mink. Vet Hum Toxicol 46:122–129

    CAS  PubMed  Google Scholar 

  • Calado T, Venâncio A, Abrunhosa L (2014) Irradiation for mold and mycotoxin control: a review: irradiation of molds and mycotoxins. Compr Rev Food Sci Food Saf 13:1049–1061. doi:10.1111/1541-4337.12095

    Article  CAS  Google Scholar 

  • Castoria R, Mannina L, Durán-Patrón R et al (2011) Conversion of the mycotoxin patulin to the less toxic desoxypatulinic acid by the biocontrol yeast Rhodosporidium kratochvilovae strain LS11. J Agric Food Chem 59:11571–11578. doi:10.1021/jf203098v

    Article  CAS  PubMed  Google Scholar 

  • Cooray R, Kiessling KH, Lindahl-Kiessling K (1982) The effects of patulin and patulin-cysteine mixtures on DNA synthesis and the frequency of sister-chromatid exchanges in human lymphocytes. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 20:893–898

    Article  CAS  Google Scholar 

  • Dong X, Jiang W, Li C, et al (2015) Patulin biodegradation by marine yeast Kodameae ohmeri. Food Addit Contam Part A 150114052509004. 10.1080/19440049.2015.1007090

  • Dvorska JE, Pappas AC, Karadas F et al (2007) Protective effect of modified glucomannans and organic selenium against antioxidant depletion in the chicken liver due to T-2 toxin-contaminated feed consumption. Comp Biochem Physiol Toxicol Pharmacol CBP 145:582–587. doi:10.1016/j.cbpc.2007.02.005

    Article  Google Scholar 

  • El Khoury A, Atoui A (2010) Ochratoxin A: general overview and actual molecular status. Toxins 2:461–493. doi:10.3390/toxins2040461

    Article  PubMed Central  PubMed  Google Scholar 

  • Evans J, Dawson K (2000) The ability of Mycosorb to bind toxins present in endophyte-infected tall fescue. In: Lyons T, Jacques K (eds). Nottingham University Press, Nottingham, pp 409–422

  • Faucet-Marquis V, Joannis-Cassan C, Hadjeba-Medjdoub K et al (2014) Development of an in vitro method for the prediction of mycotoxin binding on yeast-based products: case of aflatoxin B1, zearalenone and ochratoxin A. Appl Microbiol Biotechnol 98:7583–7596. doi:10.1007/s00253-014-5917-y

    Article  CAS  PubMed  Google Scholar 

  • Forgacs J (1962) Mycotoxicoses—the neglected diseases. Feed stuffs 34:124–34

    Google Scholar 

  • Fruhauf S, Schwartz H, Ottner F et al (2012) Yeast cell based feed additives: studies on aflatoxin B1 and zearalenone. Food Addit Contam Part Chem Anal Control Expo Risk Assess 29:217–231. doi:10.1080/19440049.2011.630679

    Article  CAS  Google Scholar 

  • Garon D, Richard E, Sage L et al (2006) Mycoflora and multimycotoxin detection in corn silage: experimental study. J Agric Food Chem 54:3479–3484. doi:10.1021/jf060179i

    Article  CAS  PubMed  Google Scholar 

  • Joannis-Cassan C, Tozlovanu M, Hadjeba-Medjdoub K et al (2011) Binding of zearalenone, aflatoxin B1, and ochratoxin A by yeast-based products: a method for quantification of adsorption performance. J Food Prot 74:1175–1185. doi:10.4315/0362-028X.JFP-11-023

    Article  CAS  PubMed  Google Scholar 

  • Kabak B, Dobson ADW, Var I (2006) Strategies to prevent mycotoxin contamination of food and animal feed: a review. Crit Rev Food Sci Nutr 46:593–619. doi:10.1080/10408390500436185

    Article  CAS  PubMed  Google Scholar 

  • Karaman M, Basmacioglu H, Ortatatli M, Oguz H (2005) Evaluation of the detoxifying effect of yeast glucomannan on aflatoxicosis in broilers as assessed by gross examination and histopathology. Br Poult Sci 46:394–400. doi:10.1080/00071660500124487

    Article  CAS  PubMed  Google Scholar 

  • Korosteleva SN, Smith TK, Boermans HJ (2007) Effects of feedborne Fusarium mycotoxins on the performance, metabolism, and immunity of dairy cows. J Dairy Sci 90:3867–3873. doi:10.3168/jds.2007-0162

    Article  CAS  PubMed  Google Scholar 

  • Lindroth S, von Wright A (1978) Comparison of the toxicities of patulin and patulin adducts formed with cysteine. Appl Environ Microbiol 35:1003–1007

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mansfield MA, Jones AD, Kuldau GA (2008) Contamination of fresh and ensiled maize by multiple Penicillium mycotoxins. Phytopathology 98:330–336. doi:10.1094/PHYTO-98-3-0330

    Article  CAS  PubMed  Google Scholar 

  • Marasas WF, Yagen B, Sydenham E et al (1987) Comparative yields of T-2 toxin and related trichothecenes from five toxicologically important strains of Fusarium sporotrichioides. Appl Environ Microbiol 53:693–696

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martins HM, Almeida I, Camacho C et al (2012) A survey on the occurrence of ochratoxin A in feeds for swine and laying hens. Mycotoxin Res 28:107–110. doi:10.1007/s12550-011-0118-3

    Article  CAS  PubMed  Google Scholar 

  • Merry RJ, Lee MRF, Davies DR et al (2006) Effects of high-sugar ryegrass silage and mixtures with red clover silage on ruminant digestion. 1. In vitro and in vivo studies of nitrogen utilization. J Anim Sci 84:3049–3060. doi:10.2527/jas.2005-735

    Article  CAS  PubMed  Google Scholar 

  • Moss MO, Long MT (2002) Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Addit Contam 19:387–399. doi:10.1080/02652030110091163

    Article  CAS  PubMed  Google Scholar 

  • Müller HM, Amend R (1997) Formation and disappearance of mycophenolic acid, patulin, penicillic acid and PR toxin in maize silage inoculated with Penicillium roqueforti. Arch Für Tierernähr 50:213–225

    Article  Google Scholar 

  • Oh S-Y, Boermans HJ, Swamy HVLN et al (2012) Immunotoxicity of Penicillium mycotoxins on viability and proliferation of bovine macrophage cell line (BOMACs). Open Mycol J 6:11–16. doi:10.2174/1874437001206010011

    Article  CAS  Google Scholar 

  • Oh S-Y, Balch CG, Cliff RL et al (2013) Exposure to Penicillium mycotoxins alters gene expression of enzymes involved in the epigenetic regulation of bovine macrophages (BoMacs). Mycotoxin Res 29:235–243. doi:10.1007/s12550-013-0174-y

    Article  CAS  PubMed  Google Scholar 

  • Pfenning C, Esch HL, Fliege R, Lehmann L (2014) The mycotoxin patulin reacts with DNA bases with and without previous conjugation to GSH: implication for related α, β-unsaturated carbonyl compounds? Arch Toxicol. doi:10.1007/s00204-014-1443-z

    PubMed  Google Scholar 

  • Pfohl-Leszkowicz A, Manderville RA (2007) Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 51:61–99. doi:10.1002/mnfr.200600137

    Article  CAS  PubMed  Google Scholar 

  • Pfohl-Leszkowicz A, Hadjeba-Medjdoub K, Ballet N et al (2015) Assessment and characterisation of yeast-based products intended to mitigate ochratoxin exposure using in vitro and in vivo models. Food Addit Contam Part Chem Anal Control Expo Risk Assess 32:604–616. doi:10.1080/19440049.2014.970590

    Article  CAS  Google Scholar 

  • Raju MV, Devegowda G (2000) Influence of esterified-glucomannan on performance and organ morphology, serum biochemistry and haematology in broilers exposed to individual and combined mycotoxicosis (aflatoxin, ochratoxin and T-2 toxin). Br Poult Sci 41:640–650. doi:10.1080/713654986

    Article  CAS  PubMed  Google Scholar 

  • Raju M, Devegowda G (2002) Esterified-glucomannan in broiler chicken diets-contaminated with aflatoxin, ochratoxin and T-2 toxin: evaluation of its binding ability (in vitro) and efficacy as immunomodulator. AJAS 15:1051–6

    CAS  Google Scholar 

  • Ramakrishna Y, Bhat RV, Ravindranath V (1989) Production of deoxynivalenol by Fusarium isolates from samples of wheat associated with a human mycotoxicosis outbreak and from sorghum cultivars. Appl Environ Microbiol 55:2619–2620

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rasmussen RR, Storm IMLD, Rasmussen PH et al (2010) Multi-mycotoxin analysis of maize silage by LC-MS/MS. Anal Bioanal Chem 397:765–776. doi:10.1007/s00216-010-3545-7

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Velázquez WP, Isaías Espinoza VH, Rojo F et al (2008) Occurrence of fungi and mycotoxins in corn silage, Jalisco State, Mexico. Rev Iberoam Micol 25:182–185

    Article  PubMed  Google Scholar 

  • Ricelli A, Baruzzi F, Solfrizzo M et al (2007) Biotransformation of patulin by Gluconobacter oxydans. Appl Environ Microbiol 73:785–792. doi:10.1128/AEM.02032-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sansing GA, Lillehoj EB, Detroy RW, Miller MA (1976) Synergistic toxic effects of citrinin, ochratoxin A and penicillic acid in mice. Toxicon Off J Int Soc Toxinology 14:213–220

    Article  CAS  Google Scholar 

  • Schmale D, Munkvold G (2009) Mycotoxins in crops: a threat to human and domestic animal health. http://www.apsnet.org/education/IntroPlantPath/Topics/mycotoxins/Pages/impact.html. Accessed 16 Nov 2009

  • Scott PM, Kennedy B, Van Walbeek W (1972) Desoxypatulinic acid from a patulin-producing strain of Penicillium patulum. Experientia 28:1252

    Article  CAS  PubMed  Google Scholar 

  • Stabel JR, Stabel TJ (1995) Immortalization and characterization of bovine peritoneal macrophages transfected with SV40 plasmid DNA. Vet Immunol Immunopathol 45:211–220

    Article  CAS  PubMed  Google Scholar 

  • Yiannikouris A, André G, Buléon A et al (2004) Comprehensive conformational study of key interactions involved in zearalenone complexation with β-D-glucans. Biomacromolecules 5:2176–2185. doi:10.1021/bm049775g

    Article  CAS  PubMed  Google Scholar 

  • Yue T, Dong Q, Guo C, Worobo RW (2011) Reducing patulin contamination in apple juice by using inactive yeast. J Food Prot 74:149–153. doi:10.4315/0362-028X.JFP-10-326

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Alltech Inc, KY, USA.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Se-Young Oh or Niel A. Karrow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, SY., Quinton, V.M., Boermans, H.J. et al. In vitro exposure of Penicillium mycotoxins with or without a modified yeast cell wall extract (mYCW) on bovine macrophages (BoMacs). Mycotoxin Res 31, 167–175 (2015). https://doi.org/10.1007/s12550-015-0227-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-015-0227-5

Keywords

Navigation