Skip to main content

Advertisement

Log in

Depositional environment reconstruction of the Maragheh Formation, East Azarbaijan, Northwestern Iran

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

The Maragheh Formation is an important deposit, which yields the savanna-type large mammal assemblage known as the “Pikermian Fauna.” Our high-resolution facies analysis of the interval between the Lower Pumice and the White Tuff demonstrated that debris-flow deposits and paleosols are dominant in the studied sequence. Fluvial channel-fill and small pond facies are the subordinate components in this interval. Most of the channel-fill deposits are interpreted as having been accumulated from ephemeral streams. The wide distribution of the Middle Pumice, the fact that it contains grains with older ages than those of the Lower Pumice, and the presence of “traction carpet” deposits allow the interpretation of the pumice interval as having been deposited from a hyperconcentrated flow probably caused by crater-lake destruction around the peak of Mt. Sahand, which supplied older rocks to the flow. The internal architecture of fluvial channel-fill deposits and the structures of paleosols (rhizoliths, cracks and slickensides: probable Vertic Inceptisols) imply a seasonal climate during deposition of the studied interval. This is consistent with previous environmental reconstructions based on mammal fossils (woodland-dominated savannah) as well as the results of phytolith analysis and δ18O data obtained from northern Iran. However, flood deposits covering the paleosols, showing sheet-like geometry, may not have been affected by large trees on the flood plain: the extent of woodland around the study site appears to have been limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexander, J., & Fielding, C. (1997). Gravel antidunes in the tropical Burdekin River, Queensland, Australia. Sedimentology, 44, 327–337.

    Article  Google Scholar 

  • Alexander, J., Bridge, J. S., Cheel, R. J., & Leclairs, S. F. (2001). Bedforms and associated sedimentary structures formed under supercritical water flows over aggrading sand beds. Sedimentology, 48, 133–152.

    Article  Google Scholar 

  • Allen, J. P., Fielding, C. R., Gibling, M. R., & Rygel, M. C. (2014). Recognizing products of paleoclimate fluctuation in the fluvial stratigraphic records: an example from the Pennsylvanian to Lower Permian of Cape Breton Island, Nova Scotia. Sedimentology, 61, 1332–1381.

    Article  Google Scholar 

  • Allen, J. R. L. (1984). Sedimentary structures, their characteristics and physical basis. New York: Elsevier.

    Google Scholar 

  • Araya, T., & Masuda, F. (2001). Sedimentary structures of antidunes: an overview. Jourmal of Sedimentological Society of Japan, 53, 1–15.

    Article  Google Scholar 

  • Arnott, R. W. C., & Hand, B. M. (1989). Bedforms, primary structures and grain fabric in the presence of suspended sediment rain. Journal of Sedimentary Petrology., 59, 1062–1069.

    Google Scholar 

  • Azizi, H., & Moinevaziri, H. (2009). Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. Journal of Geodynamics, 47, 167–179.

    Article  Google Scholar 

  • Bhak, J. J., & Chough, S. K. (1996). An interplay of syn- and intereruption depositional processes: the lower part of the Jangki Group (Miocene), SE Korea. Sedimentology, 43, 421–438.

    Article  Google Scholar 

  • Ballato, P., Mulch, A., Landgraf, A., Strecker, M. R., Dalconi, M. C., Friedrich, A., & Tabatabaei, S. H. (2010). Middle to late Miocene Middle Eastern climate from stable oxygen and carbon isotope data, southern Alnborz mountains, N Iran. Earth and Planetary Science Letters, 300, 125–138.

    Article  Google Scholar 

  • Benvenuti, M., Carnicelli, S., Ferrari, G., & Sagri, M. (2005). Depositional processes in latest Pleistocene and Holocene ephemeral streams of the Main Ethiopia Rift (Ethiopia). In Blum, M.D., Marriott, S.B. and Leclair, S.F. (Eds.), Fluvial sedimentology VII. Special Publications of International Association of Sedimentologists, 35, 277–294.

  • Bernor, R. L. (1986). Mammalian biostratigraphy, geochronology, and zoogeographic relationships of the Late Miocene Maragheh fauna, Iran. Journal of Vertebrate Paleontology, 6, 76–95.

    Article  Google Scholar 

  • Bernor, R. L., Woodburne, M. O., & Van Couvering, J. A. (1980). A contribution to the chronology of some old world Miocene faunas based on Hipparione horses. Geobios, 3, 709–705.

    Google Scholar 

  • Bernor, R. L., Semprebon, G. M., & Damuth, J. (2013). Maragheh ungulate mesowear: interpreting paleodiet and paleoecology from a diverse fauna with restricted sample sizes. Annales Zoologici Fennici, 51, 201–208.

    Article  Google Scholar 

  • Billi, P. (2007). Morphology and sediment dynamics of ephemeral stream terminal distributary systems in the Kobo Basin (northern Welo, Ethiopia). Geomorphology, 85, 98–113.

    Article  Google Scholar 

  • Bridge, J., & Demicco, R. (2008). Earth surface processes, landforms and sediment deposits. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Brierley, G. J., Ferguson, R. J., & Woolfe, K. J. (1997). What is a fluvial levee? Sedimentary Geology, 114, 1–9.

    Article  Google Scholar 

  • Campbell, B. G., Amini, M. H., Bernor, R. L., Dickenson, W., Drake, W., Van Couvering, J. A., & Van Couvering, J. A. H. (1980). Maragheh: a classical late Miocene vertebrate locality in northwestern Iran. Nature, 287, 837–841.

    Article  Google Scholar 

  • Donselaar, M. E., Cuevas Gozalo, M. C., & Moyano, S. (2013). Avulsion processes at the terminus of low-gradient semi-arid fluvial systems: lessons from the Rio Colorado, Altiplano endorheic basin, Bolivia. Sedimentary Geology, 283, 1–14.

    Article  Google Scholar 

  • Erdbrink, D.P.B., Priem, H.N.A., Hebeda, E.H., Cup, C., Dankers, P., & Cloetingh, S.A.P.L. (1976). The bone bearing beds near Maragheh in N.W. Iran. I, II. Proceedings of Koninklijke Nedderlandse Akademie van Wetenschappen, Amsterdam, Series B. 79, 85–113.

  • Eronen, J. T., Mirzaie Ataabadi, M., Micheels, A., Karme, A., Bernor, R. L., & Fortelius, M. (2009). Distribution history and climate controls of the Late Miocene Pikermian chronofauna. Proceedings of National Academy of Sciences, USA, 106, 11867–11871.

    Article  Google Scholar 

  • Fielding, C. R. (2006). Upper flow regime sheets, lenses and scour fills: extending the range of architectural elements for fluvial sediment bodies. Sedimentary Geology, 190, 227–240.

    Article  Google Scholar 

  • Frostick, L. E., & Reid, I. (1977). The origin of horizontal laminae in ephemeral stream channel fill. Sedimentology, 24, 1–9.

    Article  Google Scholar 

  • Giordano, G., De Rita, D., Fabbri, M., & Dodani, S. (2002). Facies associations of rain-generated versus crater lake-withdrawal lahar deposits from Quaternary volcanoes, central Italy. Journal of Volcanology and Geothermal Research, 118, 145–159.

    Article  Google Scholar 

  • Hiscott, R. N. (1994). Traction carpet stratification in turbidites—fact or fiction? Journal of Sedimentary Research, 64A, 204–208.

    Google Scholar 

  • Hiscott, R. N., & Middleton, G. V. (1980). Fabric of coarse deep water sandstones, Tourelle Formation, Quebec, Canada. Journal of Sedimentary Petrology, 36, 677–699.

    Google Scholar 

  • Hulka, C., & Heubeck, C. (2010). Composition and provenance history of late Cenozoic sediments in southeastern Bolivia: implications for Chaco foreland basin evolution and Andean uplift. Journal of Sedimentary Research, 80, 288–299.

    Article  Google Scholar 

  • Ilgar, A., & Nemec, W. (2005). Early Miocene lacustrine deposits and sequence stratigraphy of the Ermenek Basin, Central Taurides, Turkey. Sedimentary Geology, 173, 233–275.

    Article  Google Scholar 

  • Iseya, F. (1989). Mechanism of inverse grading of suspended load deposits. In A. Taira & F. Masuda (Eds.), Sedimentary facies in the active plate margin (pp. 113–129). Tokyo: Terra Scientific Publishing Company.

    Google Scholar 

  • Jahangiri, A. (2007). Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. Journal of Asian Earth Sciences, 30, 433–337.

    Article  Google Scholar 

  • Kamei, T., Ikeda, J. Ishida, H., Ishida, S., Onishi, I., Partoazar, H., Sasajima, S., & Nishimura, S. (1977). A general report of the geological and Paleontological survey in Maragheh area, North-West Iran, 1973. Memoir of the Faculty of Science, Kyoto University, Series of geology and mineralogy, 43, 131–164.

  • Kataoka, S. K., Urabe, A., Manville, V., & Kajiyama, A. (2008). Breakout flood from an ignimbrite-dammed valley after the 5 ka Numazawako eruption, northeast Japan. Geological Society of America Bulletin, 120, 1233–1247.

    Article  Google Scholar 

  • Kostopoulos, D. S. (2009). The Pikermian Event: temporal and spatial resolution of the Turolian large mammal fauna in SE Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 274, 82–95.

    Article  Google Scholar 

  • Kraus, M. J., & Hasiotis, S. T. (2006). Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from paleogene paleosols, Bighorn Basin, Wyoming, U.S.A. Journal of Sedimentary Research, 76, 633–646.

    Article  Google Scholar 

  • Lenhardt, N., Hornung, J., Hinderer, M., Böhnel, H., Torres-Alvarado, I. S., & Trauth, N. (2011). Build-up and depositional dynamics of an arc front volcaniclastic complex: the Miocene Tepoztlán Formation (Transmexican Volcanic Belt, Central Mexico). Sedimentology, 58, 785–823.

    Article  Google Scholar 

  • Lirer, L., Vinci, A., Alberico, I., Gifuni, T., Bellucci, F., Petrosino, P., & Tinterri, R. (2001). Occurrence of inter-eruption debris flow and hyperconcentrated flood-flow deposits on Vesuvio volcano, Italy. Sedimentary Geology, 139, 151–167.

    Article  Google Scholar 

  • Long, D. G. F. (2006). Architecture of pre-vegetation sandy-braided perennial and ephemeral river deposits in the Paleoproterozoic Athabasca Group, northern Saskatchewan, Canada as indicators of Precambrian fluvial style. Sedimentary Geology, 190, 71–95.

    Article  Google Scholar 

  • Manville, V., Németh, K., & Kano, K. (2010). Source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sedimentary Geology, 220, 136–161.

    Article  Google Scholar 

  • Martin, C. A. L., & Turner, B. R. (1998). Origins of massive-type sandstones in braided river systems. Earth Science Reviews, 44, 15–38.

    Article  Google Scholar 

  • Mazza, P. P. A., & Ventra, D. (2011). Pleistocene debris-flow deposition of the hippopotamus-bearing Collecurti bone bed (Macerata, Central Italy): taphonomic and paleoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 296–314.

    Article  Google Scholar 

  • Miall, A. D. (1996). The geology of fluvial deposits. Berlin: Springer-Verlag.

    Google Scholar 

  • Mirzaie Ataabadi, M., Bernor, R. L., Kostopoulos, D. S., Wolf, D., Orak, Z., Zare, G., Nakaya, H., Watabe, M., & Fortelius, M. (2013). Recent advances in paleobiological research of the Late Miocene Maragheh Fauna, Northwest Iran. In X. Wang, L. J. Flynn, & M. Fortelius (Eds.), Fossil mammals of Asia: Neogene biostratigraphy and chronology (pp. 546–582). New York: Colombia University Press.

    Chapter  Google Scholar 

  • Morris, R.S. (1997). The taphonomy and paleoecology of the Late Miocene Terrestrial Vertebrate locality near Maragheh, Northwest Iran: framework for paleoenvironmental analysis of Late Miocene Hominoidea. Ph.D Thesis, University of California, Los Angels.

  • Mulder, T., & Alexander, J. (2001). The physical character of submarine sedimentary density flows and their deposits. Sedimentology, 48, 269–299.

    Article  Google Scholar 

  • Naruse, H., & Masuda, F. (2006). Visualization of the internal structure of the massive division in experimental sediment-gravity-flow deposits by mapping of grain fabric. Journal of Sedimentary Research, 76, 845–865.

    Article  Google Scholar 

  • Nemec, W. (1990). Aspects of sediment movement on steep delta slopes. In Colella, A. and Prior, D.B. (Eds.), Coarse-grained deltas. Special Publications of International Association of Sedimentologists, 10, 19–73.

  • Nemec. W., & Steel, R.J. (1984). Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass flow deposits. In Koster, E.H. and Steel, R.J. (Eds.), Sedimentology of gravels and conglomerates. Canadian Society of Petroleum Geologists, Memoir, 10, 1–31.

  • Palmer, B. A., Purves, A. M., & Donoghue, S. L. (1993). Controls on accumulation of a volcaniclastic fan, Ruapehu composite volcano, New Zealand. Bulletin of Volcanology, 55, 176–189.

    Article  Google Scholar 

  • Peryam, T. C., Dorsey, R. J., & Bindemanm, I. (2011). Plio-Pleistocene climate change and timing of Peninsular Ranges uplift in southern California: evidence from paleosols and stable isotopes in the Fish Creek-Vallecito basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 305, 65–74.

    Article  Google Scholar 

  • Plink-Björklund, P. (2015). Morphodynamics of rivers strongly affected by monsoon precipitation: reviews of depositional style and forcing factors. Sedimentary Geology, 323, 110–147.

    Article  Google Scholar 

  • Postma, G., Roep, T. B., & Ruegg, G. H. J. (1983). Sandy-gravelly mass flow deposits in an ice-margin lake (Saalian, Leuvenumsche Beek Valley, Veluwe, the Netherkands), with emphasis on plug flow deposits. Sedimentary Geology, 34, 59–82.

    Article  Google Scholar 

  • Retallack, G. J. (1988). Field recognition of paleosols. Geological Society of America Special Paper, 216, 2–10.

    Google Scholar 

  • Rogers, R. L. (2005). Fine-grained debris flows and extraordinary vertebrate burials in the Late Cretaceous of Madagascar. Geology, 33, 297–300.

    Article  Google Scholar 

  • Rubin, D. M., Nelson, J. M., & Topping, D. J. (1998). Relation of inversely graded deposits to suspended-sediment grain-size evolution during the 1996 flood experiment in Grand Canyon. Geology, 26, 99–102.

    Article  Google Scholar 

  • Rust, B. R., & Gibling, M. R. (1990). Three-dimensional antidunes as HCS mimics in a fluvial sandstone: The Pennsylvanian South Bar Formation near Sydney, Nova Scotia. Journal of Sedimentary Petrology, 60, 540–548.

    Article  Google Scholar 

  • Sawada, Y., Zaree, G., Sakai, T., Itaya, T., Yagi, K., Imaizumi, M., Mirzaie Ataabadi, M., & Fortelius, M. (2016). K–Ar ages and petrology of the late Miocene pumices from the Maragheh Formation, northwest Iran. In M. Mirzaie Ataabadi and M. Fortelius (Eds.) The late Miocene Maragheh mammal fauna; results of recent multidisciplinary research. Palaeobiodiversity and Palaeoenvironments, 96(3) Doi: 10.1007/s12549-016-0232-5

  • Schumann, R. R. (1989). Morphology of Red Creek, Wyoming, an arid-region anastomosing channel system. Earth Surface Processes and Landforms, 14, 277–288.

    Article  Google Scholar 

  • Smith, G. A. (1986). Coarse-grained nonmarine volcaniclastic sediment: terminology and depositional process. Bulletin of Geological Society of America, 97, 1–10.

    Article  Google Scholar 

  • Smith, G. A. (1988). Sedimentology of proximal to distal volcaniclastics dispersed across an active foldbelt: Ellensburg Formation (late Miocene), central Washington. Sedimentology, 35, 953–977.

    Article  Google Scholar 

  • Smith, G.A. (1991), Facies sequence and geometries in continental volcaniclastic sediments. In Fisher, R.V. and Smith, G.A. (Eds.), Sedimentation in volcanic settings. SEPM Special Publication, 45, 109–121.

  • Smith, G. A., & Landis, C. A. (1995). Intra-arc basins. In A. J. Busby & R. V. Ingersoll (Eds.), Tectonics of sedimentary basins (pp. 263–298). Cambridge: Blackwell Science.

    Google Scholar 

  • Smith, G.A., & Lowe, D.R. (1991). Lahars: volcano-hydrologic events and deposition in the debris flow–hyperconcentrated flow continuum. In Fisher, R.V. and Smith, G.A. (Eds.), Sedimentation in volcanic settings. SEPM Special Publication, 45, 59–70.

  • Sohn, Y. K. (1997). On traction carpet sedimentation. Journal of Sedimentary Research, 67, 502–509.

    Google Scholar 

  • Sohn, Y. K., Rhee, C. W., & Kim, B. C. (1999). Debris flow and hyperconcentrated flood-flow deposits in an alluvial fan northwestern part of the Cretaceous Yongdong Basin, Central Korea. Journal of Geology, 107, 111–132.

    Article  Google Scholar 

  • Soil Survey Staff (1999). Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, 2nd edition. Agriculture Handbook no. 436, United States Department of Agriculture Natural Resource Conservation Service.

  • Strömberg, C. A. E., Werdelin, L., Friis, E. M., & Sarac, G. (2007). The spread of grass-dominated habitats in Turkey and surrounding areas during the Cenozoic: phytolith evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 250, 18–49.

    Article  Google Scholar 

  • Tunbridge, I. P. (1981). Sandy high energy flood sedimentation—some criteria for recognition, with an example from the Devonian of SW England. Sedimentary Geology, 28, 79–95.

    Article  Google Scholar 

  • Tunbridge, I. P. (1984). Facies model for a sandy ephemeral stream and clay playa complex; the Middle Devonian Trentishoe Formation of North Devon, U.K. Sedimentology, 31, 697–715.

    Article  Google Scholar 

  • Yagishita, K. (1994). Antidunes and traction carpet deposits in deep-water channel sandstones, Cretaceous, British Columbia, Canada. Journal of Sedimentary Research, 64, 34–41.

    Google Scholar 

Download references

Acknowledgements

The Department of Environment (environment protection organisation) of the Government of Iran permitted and facilitated this study. We would like to express our gratitude to the former and present heads of the “natural environment division” of this organisation as well as those of the “office of natural history museum and genetic resources” for their support. We also appreciate assistance by Maragheh governor, mayor, city council, DOE office and participants of the field workshops held in Maragheh during 2007–2009. TS and YS were supported by Grant-in-aid from the MEXT, Japanese Government (project no. 18255006). MMA, MF and field work in Maragheh were partially supported by the Academy of Finland, RHOI project and the Sasakawa Foundation. This manuscript was largely improved based on comments by two journal reviewers, Dr. Anu Kaakinen (University of Helsinki) and Dr. Daniel Peppe (Baylor University). The discussions about paleosols are largely improved by the comments from Dr. Peppe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Sakai.

Additional information

This article is a contribution to the special issue “The late Miocene Maragheh mammal fauna; results of recent multidisciplinary research”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakai, T., Zaree, G., Sawada, Y. et al. Depositional environment reconstruction of the Maragheh Formation, East Azarbaijan, Northwestern Iran. Palaeobio Palaeoenv 96, 383–398 (2016). https://doi.org/10.1007/s12549-016-0238-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-016-0238-z

Keywords

Navigation