Skip to main content
Log in

Microstructural and Mechanical Properties of TiCX–Ni3(Al,Ti)/Ni Functionally Graded Composites Fabricated from Ti3AlC2 and Ni Powders

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this paper, a novel type of functionally graded material (FGM) was successfully fabricated from pure Ni and Ti3AlC2 powder mixtures by hot-press sintering route at 1200 °C and 17 MPa. In each layer, Ti3AlC2 particles transformed into TiCx phase, while the additional Al–Ti atoms decomposed from Ti3AlC2 diffused into the Ni matrix, giving rise to the formation of γ′-Ni3(Al,Ti). Part of the submicron TiCx and Ni3(Al,Ti) particles were uniformly distributed in the Ni matrix, while some of the TiCx maintained the original Ti3AlC2 plate-like morphology. Both TiCx and Ni3(Al,Ti) content decreased from 60Ti3AlC2/Ni layer to 10Ti3AlC2/Ni layer in a stepwise manner was fabricated. The microstructural analysis indicates that no cracks, delamination and step-type abrupt changes occured in the graded layer of the manufactured FGM. Flexural strength and Vickers hardness enhanced with the increasing Ti3AlC2 content except for fracture strain and toughness. The overall fracture toughness and the flexural strength of FGM can reach 21.76 MPa m1/2 and 1329 ± 34 MPa, respectively. The prepared FGM, herein, with a hard ceramic surface on one side to resist local plastic deformation, and a ductile metallic surface on the other side to provide toughness.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.H. Choi, H.-S. Kim, C.H. Park, Met. Mater. Int. 22, 817 (2016)

    Google Scholar 

  2. W. Woo, D.K. Kim, E.J. Kingstonc, Mater. Sci. Eng., A 744, 618 (2019)

    CAS  Google Scholar 

  3. M. Naebe, K. Shirvanimoghaddam, Appl. Mater. Today 5, 223 (2016)

    Google Scholar 

  4. Z.H. Jin, G.H. Paulino, Int. J. Fract. 107, 73 (2001)

    CAS  Google Scholar 

  5. W. Pompea, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, Mater. Sci. Eng., A 362, 40 (2003)

    Google Scholar 

  6. B. Saleh, J. Jiang, A. Ma, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00273-8

    Article  Google Scholar 

  7. T. Traini, C. Mangano, R.L. Sammons, F. Mangano, A. Macchi, A. Piattelli, Dent. Mater. 24, 1525 (2008)

    CAS  Google Scholar 

  8. D. Kim, K. Park, K. Kim, Mater. Sci. Eng., A 745, 379 (2019)

    CAS  Google Scholar 

  9. C. Morin, S. Le Gallet, M. Ariane, F. Bernarda, Ceram. Int. 42, 3056 (2016)

    CAS  Google Scholar 

  10. T. Fujii, K. Tohgo, M. Iwao, J. Alloys Compd. 766, 1 (2018)

    CAS  Google Scholar 

  11. Q. Cong, F.M. Xu, J.Y. Li, J. Mater. Sci. Forum 675, 575 (2011)

    Google Scholar 

  12. M. Eriksson, M. Radwan, Z. Shen, Int. J. Refract. Metals Hard Mater. 36, 31 (2013)

    CAS  Google Scholar 

  13. D.M. Hulbert, D. Jiang, D.V. Dudina, A.K. Mukherjee, Int. J. Refract. Metals Hard Mater. 27, 367 (2009)

    CAS  Google Scholar 

  14. X.-H. Zhang, J.-C. Han, S.-Y. Du, J.V. Wood, J. Mater. Sci. 35, 1925 (2000)

    CAS  Google Scholar 

  15. X. Jin, L. Wu, Y. Sun, Mater. Sci. Eng., A 509, 63 (2009)

    Google Scholar 

  16. K. Tohgo, T. Suzuki, H. Araki, Eng. Fract. Mech. 72, 2359 (2005)

    Google Scholar 

  17. K. Tohgo, M. Iizuka, H. Araki, Y. Shimamura, Eng. Fract. Mech. 75, 4592 (2008)

    Google Scholar 

  18. L. Li, J. Wang, P. Lin, H. Liu, Ceram. Int. 43, 16638 (2017)

    CAS  Google Scholar 

  19. J. Pawel, P. Wojciech, B. Zbigniew, Materials 8, 2537 (2015)

    Google Scholar 

  20. Y.C. Ding, S.B. Zhang, J.H. Liu, J. Foundry Technol. 7, 1376 (2014)

    Google Scholar 

  21. Y.F. Yang, D.K. Mu, Q.C. Jiang, Mater. Chem. Phys. 143, 480 (2014)

    CAS  Google Scholar 

  22. G. Gobinda, S.H. Cho, S.W. Lee, Met. Mater. Int. 19, 113 (2013)

    Google Scholar 

  23. X.D. Hui, Y.S. Yang, Z.F. Wang, Mater. Sci. Eng., A 282, 187 (2000)

    Google Scholar 

  24. E. Dănăilă, L. Benea, N. Caron, Met. Mater. Int. 22, 924 (2016)

    Google Scholar 

  25. Y. Lyu, Y. Sun, Y. Yang, Met. Mater. Int. 22, 311 (2016)

    CAS  Google Scholar 

  26. Y. Chol, J.K. Lee, M.E. Mullins, J. Mater. Sci. 32, 1717 (1997)

    Google Scholar 

  27. Q.S. Song, Q. Xu, L. Xu, J. Alloys Compd. 690, 116 (2017)

    CAS  Google Scholar 

  28. Z.D. Liu, J. Tian, B. Li, L.P. Zhao, Mater. Sci. Eng., A 527, 3898 (2010)

    Google Scholar 

  29. J.C. Han, X.H. Zhang, J.V. Wood, Mater. Sci. Eng., A 280, 328 (2000)

    Google Scholar 

  30. M.Y. Koo, J.S. Park, J. Scr, Scr. Mater. 66, 487 (2012)

    CAS  Google Scholar 

  31. G.Q. Xiao, Q.C. Fan, M.Z. Guo, Mater. Sci. Eng., A 382, 132 (2004)

    Google Scholar 

  32. B.H. Lohse, A. Calka, D. Wexler, J. Alloys Compd. 394, 148 (2005)

    CAS  Google Scholar 

  33. A.W. Weimer, Carbide, J. Eur. Ceram. Soc. 18, 735 (1998)

    Google Scholar 

  34. Y. Choi, S.W. Rhee, J. Mater. Sci. 28, 6669 (1993)

    CAS  Google Scholar 

  35. W.J. Wang, H.X. Zhai, L. Chen, Z.Y. Huang, Mater. Sci. Eng., A 616, 214 (2014)

    CAS  Google Scholar 

  36. Y.F. Yang, H.Y. Wang, J. Zhang, J. Am. Ceram. Soc. 91, 2736 (2008)

    CAS  Google Scholar 

  37. Z.Y. Huang, J. Bonneville, H.X. Zhai, J. Alloys Compd. 602, 53 (2014)

    CAS  Google Scholar 

  38. W.Q. Hu, Z.Y. Huang, L.P. Cai, Mater. Sci. Eng., A 697, 48 (2017)

    CAS  Google Scholar 

  39. W.Q. Hu, Z.Y. Huang, L.P. Cai, J. Alloys Compd. 747, 1043 (2018)

    CAS  Google Scholar 

  40. W.Q. Hu, Z.Y. Huang, L.P. Cai, J. Alloys Compd. 765, 987 (2018)

    CAS  Google Scholar 

  41. W.Q. Hu, Z.Y. Huang, G.M. Zheng, J. Alloys Compd. 774, 739 (2019)

    CAS  Google Scholar 

  42. M.X. Ai, H.X. Zhai, Y. Zhou, J. Am. Ceram. Soc. 89, 1114 (2006)

    CAS  Google Scholar 

  43. W.Q. Hu, Z.Y. Huang, L.P. Cai, Mater. Charter 135, 295 (2018)

    CAS  Google Scholar 

  44. K.J. Lee, P. Nash, J. Phase Equil. 12, 551 (1991)

    CAS  Google Scholar 

  45. E.O. Ezugwu, Z.M. Wang, A.R. Machado, J. Mater. Process. Technol. 86, 1 (1999)

    Google Scholar 

  46. J.N. DuPont, J.C. Lippold, S.D. Kiser, Welding Metallurgy and Weldability of Nickel-Based Alloys (Wiley, Hoboken, 2009), pp. 26–30

    Google Scholar 

  47. L.C. Hsiung, H.H. Sheu, J. Alloys Compd. 479, 314 (2009)

    CAS  Google Scholar 

  48. H.M. Wen, T.D. Topping, D. Isheim, Acta Mater. 61, 2769 (2013)

    CAS  Google Scholar 

  49. J.R. Davis, Nickel, cobalt, and their alloys (ASM International, Russell Township, 2000)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation of China (NSFC) under Grant Nos. 51871011, 51572017 and 51301013, by Beijing Government Funds for the Constructive Project of Central Universities, and by fundamental Research Funds for the Central Universities under Grant No. 2018YJS144.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenying Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, G., Huang, Z., Yu, Q. et al. Microstructural and Mechanical Properties of TiCX–Ni3(Al,Ti)/Ni Functionally Graded Composites Fabricated from Ti3AlC2 and Ni Powders. Met. Mater. Int. 26, 905–913 (2020). https://doi.org/10.1007/s12540-019-00357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00357-5

Keywords

Navigation