Skip to main content
Log in

Effects of cooling rate and stabilization annealing on fatigue behavior of β-processed Ti-6Al-4V alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effects of stabilization annealing and cooling rate on high cycle fatigue (HCF) and fatigue crack propagation (FCP) behaviors of β-processed Ti64 alloys were examined. After β-process heating above β transus, two different cooling rates of air cooling (β-annealing) and water quenching (β-quenching) were utilized. Selected specimens were then underwent stabilization annealing. The tensile tests, HCF and FCP tests on conducted on the β-processed Ti64 specimens with and without stabilization annealing. No notable microstructural and mechanical changes with stabilization annealing was observed for the β-annealed Ti64 alloys. However, significant effect of stabilization annealing was found on the FCP behavior of β-quenched Ti64 alloys, which appeared to be related to the built-up of residual stress after quenching. The mechanical behavior of β-processed Ti64 alloys with and with stabilization annealing was discussed based on the micrographic examination, including crack growth path and crack nucleation site, and fractographic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. O. Ezugwu and Z. M. Wang, J. Mater. Process. Technol. 68, 262 (1997).

    Article  Google Scholar 

  2. A. Andrade, A. Morcelli, and R. Lobo, Revista Matéria 15, 364 (2010).

    Article  Google Scholar 

  3. H. Chandler, Heat Treater's Guide: Practices and Procedures for Nonferrous Alloys, p. 459, ASM International, Ohio, USA (1996).

    Google Scholar 

  4. S. D. Henry, Fatigue Data Book: Light Structural Alloys, p. 264, ASM International, Ohio, USA (1994).

    Google Scholar 

  5. G. Lütjering, Mat. Sci. Eng. A 243, 32 (1998).

    Article  Google Scholar 

  6. R. Wanhill and S. Barter, Fatigue of Beta Processed and Beta Heat-Treated Titanium Alloys, p. 1, Springer Science & Business Media, Berlin, Germany (2011).

    Google Scholar 

  7. R. P. Gangloff and B. P. Somerday, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, Its Characterisation and Effects on Particular Alloy Classe, p. 970, Elsevier, Amsterdam, Netherlands (2012).

    Book  Google Scholar 

  8. G. R. Yoder, L. A. Cooley, and T. W. Crooker, Metall. Mater. Trans. A 9, 1413 (1978).

    Article  Google Scholar 

  9. G. Welsch, R. Boyer, and E. W. Collings, Materials Properties Handbook: Titanium Alloys, p. 484, ASM International, Ohio, USA (1993).

    Google Scholar 

  10. F. C. Campbell, Jr, Manufacturing Technology for Aerospace Structural Materials, p. 152, Elsevier, Amsterdam, Netherlands (2011).

    Google Scholar 

  11. G. R. Yoder, L. A. Cooley, and T. W. Crooker, A Micromechanistic Interpretation of Cyclic Crack-Growth Behavior in a Beta-Annealed Ti-6Al-4V Alloy, No. NRL-8048. Naval Research Lab, Washington DC, USA (1976).

    Google Scholar 

  12. M. J. Donachiel, Jr, Heat Treating Titanium and Its Alloys, p. 49, Heat Treating Progress, ASM International, Ohio, USA (1993).

    Google Scholar 

  13. M. J. Donachie, Titanium: A Technical Guide, 2nd Edition, p. 58, ASM International, Ohio, USA (2000).

    Google Scholar 

  14. R. K. P. Anil, M. J. Ajin, S. Ajin, J. D. Christo, N. Nived Sankar, P. Bimalkumar, et al. Int. J. Mech. Eng. Tech. 6, 116 (2015).

    Google Scholar 

  15. R. Pederson, Microstructure and Phase Transformation of Ti-6Al-4V, pp. 10–12, Luleå University of technology, Luleå, Sweden (2002).

    Google Scholar 

  16. L. M. Gammon, R. D. Briggs, J. M. Packard, K. W. Batson, R. Boyer, and C. W. Domby, Volume 9: Metallography and Microstructures, p. 899, ASM Iternational, Ohio, USA (1985).

    Google Scholar 

  17. F. H. Froes, Titanium: Physical Metallurgy, Processing, and Applications, p. 94, ASM International, Ohio, USA (2015).

    Google Scholar 

  18. T. V. Rajan, C. P. Sharma and A. Sharma, Heat Treatment: Principles and Techniques, p. 305, PHI Learning Pvt. Ltd., New Delhi, India (2011).

    Google Scholar 

  19. G. Welsch, R. Boyer, and E. W. Collings, Materials Properties Handbook: Titanium Alloys, p. 6, ASM International, Ohio, USA (1993).

    Google Scholar 

  20. ASTM Standard E466, Standard Practice for Conduction Force Controlled Constant Amplitude Axial Fatigue test of Metallic Materials, Vol. 03. 01, Annual Book of ASTM Standards, USA (2002).

    Google Scholar 

  21. ASTM Standard E647, Standard Test Method for Measurement of Fatigue Crack Growth Rates, Vol. 03. 01, Annual Book of ASTM Standards, USA (2000).

    Google Scholar 

  22. D. H. Jung, J. K. Kwon, N. S. Woo, Y. J. Kim, M. Goto, and S. S. Kim, Metall. Mater. Trans. A 45 654 (2014).

    Article  Google Scholar 

  23. D. H. Jeong, S. G. Lee, W. K. Jang, J. K. Choi, Y. J. Kim, and S. S. Kim, Metall. Mater. Trans. A 44, 4601 (2013).

    Article  Google Scholar 

  24. D. H. Jeong, S. G. Lee, I. S. Seo, J. Y. Yoo, and S. S. Kim, Met. Mater. Int. 21, 22 (2015).

    Article  Google Scholar 

  25. R. O. Ritchie, Int. Met. Reviews 24, 205 (1979).

    Article  Google Scholar 

  26. T. L. Mackay, B. J. Alperin, and D. D. Bhatt, Eng. Fract. Mech. 18, 403 (1983).

    Article  Google Scholar 

  27. J. Gayda, R. V. Miner, and T. P. Gabb, Superalloys 1984: Proc. 5th International Symposium on Superalloys, p. 731, Metallurgical Society of AIME, Warrendale, USA (1984).

    Book  Google Scholar 

  28. G. Birkbeck, A. E. Inckle, and G. W. J. Waldron, J. Mater. Sci. 6, 319 (1971).

    Article  Google Scholar 

  29. B. D. Venkatesh, D. L. Chen, and S. D. Bhole, Mat. Sci. Eng. A 506, 117 (2009).

    Article  Google Scholar 

  30. T. Morita, K. Hatsuoka, T. Iizuka, and K. Kawasaki, Mater. Trans. 46, 1681 (2005).

    Article  Google Scholar 

  31. S. L. Semiatin, S. L. Knisley, P. N. Fagin, F. Zhang, and D. R. Barker, Metall. Mater. Trans. A 34, 2377 (2003).

    Article  Google Scholar 

  32. O. M. Ivasishin, S. L. Semiatin, P. E. Markovsky, S. V. Shevchenko, and S. V. Ulshin, Mat. Sci. Eng. A 337, 88 (2002).

    Article  Google Scholar 

  33. W. Ziaja, J. Sieniawski, K. Kubiak, and M. Motyka, Inżynieria Materiałowa 22, 981 (2001).

    Google Scholar 

  34. G. Lütjering and J. C. Williams, Titanium, p. 218, Springer Science & Business Media, Berlin, Germany (2013).

    Google Scholar 

  35. D. Eylon and C. M. Pierce, Metall. Mater. Trans. A 7, 111 (1976).

    Article  Google Scholar 

  36. P. J. Bania, L. R. Bidwell, J. A. Hall, D. Eylon, and A. K. Chakrabarti, Titanium and Titanium Alloys, Scientific and Technological Aspects, Vol. 1 (eds, J. C. Williams, A. F. Belov), p. 663, Plenum Press, New York, USA (1982).

    Google Scholar 

  37. J. Ruppen, P. Bhowal, D. Eylon, and A. J. McEvily, Fatigue Mechanisms, ASTM STP 675 (ed. J. Fong), p. 47, American Society for Testing and Materials, Philadelphia, USA (1979).

    Book  Google Scholar 

  38. D. H. Jeong, H. K. Sung, Y. N. Kwon, and S. S. Kim, Met. Mater. Int. 22, 594 (2016).

    Article  Google Scholar 

  39. S. G. Ivanova, R. R. Biederman, and R. D. Sisson Jr., J. Mater. Eng. Perform. 11, 226 (2002).

    Article  Google Scholar 

  40. S.-H. Kim, K.-Si. Kim, K. S. Cho, K. J. Euh, Y. M. Rhyim, and K.-A. Lee, Korean J. Met. Mater. 53, 96 (2015).

    Google Scholar 

  41. M. J. Kim, G.-Y. Kim, K. J. Euh, Y.-M. Rhyim, and K.-A. Lee, Korean J. Met. Mater. 53, 169 (2015).

    Article  Google Scholar 

  42. D. H. Jeong, T. D. Park, J. S. Lee, and S. S. Kim, Met. Mater. Int. 21, 453 (2015).

    Article  Google Scholar 

  43. V. Randle, Acta Mater. 46, 1459 (1998).

    Article  Google Scholar 

  44. A. L. Pilchak, W. J. Porter, and R. John, J. Mater. Sci. 47, 7235 (2012).

    Article  Google Scholar 

  45. S. J. Hong, S. S. Kim, C. G. Lee, and S. J. Kim, J. Mater. Sci. 42, 9888 (2007).

    Article  Google Scholar 

  46. W. G. Seo, D. H. Jeong, Y. N. Kwon, D. J. Lee, and S. S. Kim, Proc. 30th Conference on Advanced Structural Materials, p. 96, Korean Inst. Met. Mater., Pohang, Korea (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangshik Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, W., Jeong, D., Lee, D. et al. Effects of cooling rate and stabilization annealing on fatigue behavior of β-processed Ti-6Al-4V alloys. Met. Mater. Int. 23, 648–659 (2017). https://doi.org/10.1007/s12540-017-6730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6730-9

Keywords

Navigation