Skip to main content
Log in

Room temperature magnesium electrorefining by using non-aqueous electrolyte

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The increasing usage of magnesium inevitably leads to a fast increase in magnesium scrap, and magnesium recycling appears extremely beneficial for cost reduction, preservation of natural resources and protection of the environment. Magnesium refining for the recovery of high purity magnesium from metal scrap alloy (AZ31B composed of magnesium, aluminum, zinc, manganese and copper) at room temperature is investigated with a non-aqueous electrolyte (tetrahydrofuran with ethyl magnesium bromide). A high purity (99.999%) of electrorefined magneisum with a smooth and dense surface is obtained after potentiostatic electrolysis with an applied voltage of 2 V. The selective dissolution of magnesium from magnesium alloy is possible by applying an adequate potential considering the tolerable impurity level in electrorefined magnesium and processing time. The purity estimation method suggested in this study can be useful in evaluating the maximum content of impurity elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Dharmendra, K. P. Rao, Y. V. R. K. Prasad, N. Hort, and K. U. Kainer, Met. Mater. Int. 21, 134 (2015).

    Article  Google Scholar 

  2. Y. H. Kim and W. J. Kim, Met. Mater. Int. 21, 374 (2015).

    Article  Google Scholar 

  3. D. H. Kim, J. M. Choi, D. H. Jo, and I. M. Park, Korean J. Met. Mater. 52, 195 (2014).

    Article  Google Scholar 

  4. J. M. Choi, D. H. Kim, D. H. Cho, Y. S. Choi, and I. M. Park, Korean J. Met. Mater. 52, 347(2014).

    Article  Google Scholar 

  5. G. Song, B. Johannesson, S. Hapugoda, and D. StJohn, Corr. Sci. 46, 955 (2004).

    Article  Google Scholar 

  6. Y. NuLi, J. Yang, and R. Wu, Electrochem. Commun. 7, 1105 (2005).

    Article  Google Scholar 

  7. S. Tzamtzis, H. Zhang, M. Xia, NH Babu, and Z. Fan, Mat. Sci. Eng. A 528, 2664 (2011).

    Article  Google Scholar 

  8. H. Antrekowitsch, G. Hanko, and P. Ebner, Magnesium Technology 2002 (ed. H. I. Kaplan), p. 43, TMS, Washington (2002).

  9. G. Liu, Y. Wang, and Z. Fan, Mat. Sci. Eng. A 472, 251 (2008).

    Article  Google Scholar 

  10. A. Javaid, E. Essadiqi, S. Bell, and B. Davis, Magnesium Technology 2006 (eds. A. A. Luo, N. R. Neelameggham, and R. S. Beals), p. 7, TMS, Texas (2006).

  11. C. Scharf and A. Ditze, Magnesium Alloys and Their Applications (eds. B. L. Mordike and K. U. Kainer), p. 685, Werkstoff-Informationsgesellschaft GmbH, Wolfsburg (1998).

  12. K. B. Oldham, J. C. Myland, and A. M. Bond, Electrochemical Science and Technology: Fundamentals and Applications, p. 73, John Wiley & Sons, Ltd., UK (2012).

    Google Scholar 

  13. R. Walker, Hydrometallurgy 4, 209 (1979).

    Article  Google Scholar 

  14. B. Veilleux, A.-M. Lafront, and E. Ghali, J. Appl. Electrochem. 31, 1017 (2001).

    Article  Google Scholar 

  15. T. Takenaka, T. Fujita, S. Isazawa, and M. Kawakami, Mater. Trans. 42, 1249 (2001).

    Article  Google Scholar 

  16. T. Takenaka, S. Isazawa, M. Mishina, Y. Kamo, and M. Kawakami, Mater. Trans. 44, 546 (2003).

    Article  Google Scholar 

  17. L. P. Lossius and F. Emmenegger, Electrochim. Acta 41, 445 (1996).

    Article  Google Scholar 

  18. D. J. Kim, H. S. Ryu, I. P. Kim, K. K. Cho, T. H. Nam, K. W. Kim, J. H. Ahn, and H. J. Ahn, Phys. Scr. T129, 70 (2007).

  19. J. H. Connor, W. E. Reid, and G. B. Wood, J. Electrochem. Soc. 104, 38 (1957).

    Article  Google Scholar 

  20. D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, and E. Levi, Nature 407, 724 (2000).

    Article  Google Scholar 

  21. Q. S. Zhao, Y. N. Nuli, Y. S. Guo, J. Yang, and J. L. Wang, Electrochim. Acta 56, 6530 (2011).

    Article  Google Scholar 

  22. Y. NuLi, J. Yang, and P. Wang, Appl. Surf. Sci. 252, 8086 (2006).

    Article  Google Scholar 

  23. J. Fuller, R. T. Carlin, and R. A. Osteryoung, J. Electrochem. Soc. 144, 3881 (1997).

    Article  Google Scholar 

  24. I. Haas and A. Gedanken, Chem. Commun. 15, 1795 (2008).

    Article  Google Scholar 

  25. O. Shimamura, N. Yoshimoto, M. Matsumoto, M. Egashia, and M. Morita, J. Power Sources 196, 1586 (2011).

    Article  Google Scholar 

  26. M. Egashiraa, H. Todob, N. Yoshimotoa, M. Morita, and J. I. Yamakic, J. Power Sources 174, 560 (2007).

    Article  Google Scholar 

  27. C. Liebenow, J. Appl. Electrochem. 27, 221 (1997).

    Article  Google Scholar 

  28. J. Eckert, Dechema-Monographie 125, 425 (1992).

    Google Scholar 

  29. K. Kwon, J. Park, P. Kusumah, B. Dilasari, H. Kim, and C. K. Lee, Magnesium Technology 2014 (eds. M. Alderman, M. V. Manuel, N. Hort, and N. R. Neelameggham), John Wiley & Sons, Inc., Hoboken, NJ, USA. (2014).

  30. D. Aurbach, I. Weissman, Y. Gofer, and E. Levi, Chem. Rec. 3, 61 (2003).

    Article  Google Scholar 

  31. Q. B. Zhang and Y. X. Hua, J. Appl. Electrochem. 39, 261 (2009).

    Article  Google Scholar 

  32. M. Xu, D. G. Ivey, Z. Xie, and W. Qu, Electrochim. Acta 89, 756 (2013).

    Article  Google Scholar 

  33. A. Cox and D. J. Fray, J. Electrochem. Soc. 150, D200 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyungjung Kwon or Churl Kyoung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Jung, Y., Kusumah, P. et al. Room temperature magnesium electrorefining by using non-aqueous electrolyte. Met. Mater. Int. 22, 907–914 (2016). https://doi.org/10.1007/s12540-016-5605-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-5605-9

Keywords

Navigation