Skip to main content
Log in

Effect of aluminum anodizing in phosphoric acid electrolyte on adhesion strength and thermal performance

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study examined the adhesive bond strength and thermal performance of the anodized aluminum 6061 in phosphoric acid electrolyte to improve the adhesive bond strength and thermal performance for use in metal core printed circuit boards (MCPCB). The electrolyte temperature and applied voltage were altered to generate varied pore structures. The thickness, porosity and pore diameter of the anodized layer were measured. The pore morphologies were affected most by temperature, which was the driving force for ion transportation. The mechanism of adhesive bond was penetration of the epoxy into the pores. The optimal anodization conditions for maximum adhesive bond strength, 27 MPa, were 293 K and 100V. The maximum thermal conductivity of the epoxy-treated anodized layer was 1.6 W/m·K at 273 K. Compared with the epoxy-treated Al layer used for conventional MCPCBs, the epoxy-treated anodized layer showed advanced thermal performance due to a low difference of thermal resistance and high heat dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Juntunen, A. Sitomaniemi, O. Tapaninen, R. Persons, M. Challingsworth, and V. Heikkinen, IEEE. T. Compon. Pack. Man. 2, 1957 (2012).

    Google Scholar 

  2. E. Juntunen, O. Tapaninen, A. Sitomaniemi, M. Jamsa, V. Heikkinen, M. Karppinen, and P. Karioja, IEEE. T. Power. Electr. 29, 1410 (2014).

    Article  Google Scholar 

  3. H.-M. Cho and H. Joon Kim, IEEE. Electr. Device. L. 29, 991 (2008).

    Article  Google Scholar 

  4. J.-P. K. Y.-W. Kim, J.-B. Kim, M.-S. Kim, J.-M. Sim, S.-B. Song, and N. Hwang, J. Korean. Phys. Soc. 54, 1873 (2009).

    Article  Google Scholar 

  5. W. K. C. Yung, J. HKPCA. Q2, 12 (2007).

    Google Scholar 

  6. L. Z. Feiyue Li, Robert M. Metzger, J. Am. Chem. Soc. 10, 2470 (1998).

    Google Scholar 

  7. M. Miyagi, Y. Hiratani, T. Taniguchi, and S. Nishida, OAS. 26, 970 (1987).

    Google Scholar 

  8. M. A. Páez, T. M. Foong, C. T. Ni, G. E. Thompson, K. Shimizu, H. Habazaki, P. Skeldon, and G. C. Wood, Corros. Sci. 38, 59 (1996).

    Article  Google Scholar 

  9. K.-J. Heo, J.-S. Eom, and S.-J. Kim, Korean J. Met. Mater. 53, 655 (2015).

    Google Scholar 

  10. Y. K. Kim, I. S. Park, S. J. Lee, and M. H. Lee, Met. Mater. Int. 19, 353 (2013).

    Article  Google Scholar 

  11. B.-Y. Jeong and E. H. Jung, Met. Mater. Int. 19, 617 (2013).

    Article  Google Scholar 

  12. S. J. Garcia-Vergara, P. Skeldon, G. E. Thompson, and H. Habazaki, Electrochim. Acta. 52, 681 (2006).

    Article  Google Scholar 

  13. G. E. Thompson, Thin Solid Films. 297, 192 (1997).

    Article  Google Scholar 

  14. T. P. Hoar and N. F. Mott, J. Phys. Chem. Solids. 9, 97 (1959).

    Article  Google Scholar 

  15. S. Mohagheghi, A. Hatefi, and A. Kianvash, Surf. Eng. 29, 737 (2013).

    Article  Google Scholar 

  16. D. E. Packham, K. Bright, and B. W. Malpass, J. Appl. Polym. Sci. 18, 3237 (1974).

    Article  Google Scholar 

  17. A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, and W. Z. Misiolek, J. Membrane. Sci. 319, 192 (2008).

    Article  Google Scholar 

  18. J.-C. K. Woo Lee, and Ulrich Gösele, Adv. Funct. Mater. 40, 21 (2010).

    Article  Google Scholar 

  19. L. Zaraska, G. D. Sulka, and M. Jaskula, Surf. Coat. Tech. 204, 1729 (2010).

    Article  Google Scholar 

  20. J. Lee, Y. Kim, U. Jung, and W. Chung, Mater. Chem. Phys. 141, 680 (2013).

    Article  Google Scholar 

  21. P. Skeldon, K. Shimizu, G. E. Thompson, and G. C. Wood, Thin Solid Films 123, 127 (1985).

    Article  Google Scholar 

  22. Y. Xu, G. E. Thompson, G. C. Wood, and B. Bethune, Corros. Sci. 27, 83 (1987).

    Article  Google Scholar 

  23. L. I.-R. S. J. Garcia-Vergara, C. E. Blanco-Pinzon, P. Skeldon, G. E. Thompson, and P. Campestrini, P. Roy. Soc. A-Math. Phy. 462, 2345 (2006).

    Article  Google Scholar 

  24. S. Z. Chu, K. Wada, S. Inoue, and S. Todoroki, Surf. Coat. Tech. 169-170, 190 (2003).

    Article  Google Scholar 

  25. A. O. Araoyinbo, M. N. Ahmad Fauzi, S. Sreekantan, and A. Aziz, J. Non-Cryst. Solids. 356, 1057 (2010).

    Article  Google Scholar 

  26. N. F. M. N. Cabrera, Rep. Prog. Phys. 12, 163 (1948-1949).

    Article  Google Scholar 

  27. J.-S. Zhang, X.-H. Zhao, Y. Zuo, and J.-P. Xiong, Surf. Coat. Tech. 202, 3149 (2008).

    Article  Google Scholar 

  28. R. P. Digby and D. E. Packham, Int. J. Adhes. Adhes. 15, 61 (1995).

    Article  Google Scholar 

  29. O. Lunder, B. Olsen, and K. Nisancioglu, Int. J. Adhes. Adhes. 22, 143 (2002).

    Article  Google Scholar 

  30. P. Chowdhury, A. N. Thomas, M. Sharma, and H. C. Barshilia, Electrochim. Acta. 115, 657 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonsub Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Kim, D., Kim, Y. et al. Effect of aluminum anodizing in phosphoric acid electrolyte on adhesion strength and thermal performance. Met. Mater. Int. 22, 20–25 (2016). https://doi.org/10.1007/s12540-015-5426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-5426-2

Keywords

Navigation