Skip to main content
Log in

Effect of applied potential on fatigue crack propagation behavior of API X80 steel in seawater

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the present study, the fatigue crack propagation (FCP) tests were conducted on X80 steel in air and artificial seawater (ASW) under various applied potentials to establish optimum and safe working limits of cathodic protection (CP). The slow strain rate test (SSRT) was also conducted on the X80 BM specimens in ASW under CP potential to identify the susceptibility of hydrogen affecting the FCP behavior. The CP potential of −850 and −1,050 mVSCE suppressed the environmental effect of seawater on the FCP behavior of X80 BM and WM specimens, showing almost identical da/dN-ΔK curves for both air and ASW environments. The SSRT in ASW under CP potential of −1,050 mVSCE suggested that the X80 BM specimen steel is susceptible to hydrogen embrittlement, but the effect of hydrogen was believed to be marginal in affecting the FCP behavior of the X80 specimens at a loading frequency of 10 Hz. The FCP behavior of high strength X80 steel is discussed based on the fractographic observation to understand the FCP mechanism in seawater under various CP potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Wang, Y. Shan, and K. Yang, Mater. Sci. Eng. A, 502, 38 (2009).

    Article  Google Scholar 

  2. S. Y. Shin, S. M. Hong, J. H. Bae, K. S. Kim, and S. H. Lee, Met. Mater. Int. 47, 155 (2009).

    Google Scholar 

  3. Y. Wang, W. Zhao, H. Ai, X. Zhou and T. Zhang, Corros. Sci. 53, 2761 (2011).

    Article  Google Scholar 

  4. R. F. D. Silva, F. A. F. Teófilo, E. Parente Jr., A. M. C. D. Melo, and Á. S. D. Holanda, Mar. Struct. 33, 1 (2013).

    Article  Google Scholar 

  5. M. Katsumi and O. Kenji, JFE Technology Report, No. 18 (2013).

    Google Scholar 

  6. Y. Bai and Q. Bai, Subsea Pipelines and Risers, pp.413–451, Elsevier, Kidlington (2005).

    Google Scholar 

  7. D. P. Baxter, S. J. Maddox, and R. J. Pargeter, 26th Int. Conf. on Offshore Mech. & Arctic Eng., p.117, ASME, Sand Diego, USA (2007).

    Google Scholar 

  8. NORSOK, NORSOK Standard M-001 (2004).

    Google Scholar 

  9. C. Lindley and W. J. Rudd, Mar. Struct. 14, 397 (2001).

    Article  Google Scholar 

  10. J. Billingham, J. V. Sharp, J. Spurrier, and P. J. Kilgallon, Health and Safety Executive (HSE) Books, Research Report 105, Cranfield University, Cranfield (2003).

    Google Scholar 

  11. NORSOK, NORSOK Standard M-503 (2007).

    Google Scholar 

  12. J. Prey, R. W. Barrett, and J. N. Wanklyn, Design and Operational Guidance on Cathodic Protection of Offshore Structures, Subsea Installations and Pipelines, Energy Institute, London (1990).

    Google Scholar 

  13. M. Cabrini, S. Lorenzi, P. Marcassoli, and T. Pastore, Corros. Rev. 29, 261 (2011).

    Article  Google Scholar 

  14. ASM International Handbook Committee, ASM Handbook 19 — Fracture and Fatigue Properties of Structural Steels, ASM International (1996).

    Google Scholar 

  15. M. N. James, J. Eng. Design, 9, 329 (1998).

    Article  Google Scholar 

  16. J. K. Kwon, Y. J. Kim, S. Z. Han, M. Goto, and S. S. Kim, Met. Mater. Int. 15, 925 (2009).

    Article  Google Scholar 

  17. S. S. Kim, J. K. Kwon, N. S. Woo, S. E. Chung, and Y. J. Kim, Met. Mater. Int. 19, 1 (2013).

    Article  Google Scholar 

  18. D. H. Jeong, S. G. Lee, W. K. Jang, J. K. Choi, Y. J. Kim, and S. S. Kim, Metall. Trans. A, 44A, 4601 (2013).

    Article  Google Scholar 

  19. S. S. Kim, J. T. Burns, and R. P. Gangloff, Eng. Fract. Mech. 76, 651 (2009).

    Article  Google Scholar 

  20. British Standard, Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, British Standards Institution (BSI), BS 7910, London (2005).

    Google Scholar 

  21. R. N. King, Health, and Safety Executive (HSE) Books, OTH 511 (2003).

    Google Scholar 

  22. R. N. King, A. Stacey, and J. V. Sharp, 15th International Conference Offshore Mechanics and Arctic Engineering, pp.341–348, Florence, Italy (1996).

    Google Scholar 

  23. S. A. Shipilov and I. L. May, Eng. Fail. Anal. 13, 1159 (2006).

    Article  Google Scholar 

  24. R. Murakmi and W. G. Ferguson, Fatigue Fract. Eng. Mater. Struct. 9, 477 (1987).

    Article  Google Scholar 

  25. P. S. Pao, S. J. Gill, C. R. Feng, and K. K. Sankaran, Scr. Mater. 45, 605 (2001).

    Article  Google Scholar 

  26. A. K. Vasudevan and S. Suresh, Metall. Trans. A, 13A, 2271 (1982).

    Article  Google Scholar 

  27. ASTM Standard G5, Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements, Annual Book of ASTM Standards.03.02 (2002).

    Google Scholar 

  28. ASTM Standard D1141, Standard Specification for Substitute Ocean Water, Annual book of ASTM Standards.11.02 (1990).

    Google Scholar 

  29. ASTM Standard E647, Standard Test Method for Measurement of Fatigue Crack Growth Rates, Annual Book of ASTM Standards.03.01 (2002).

    Google Scholar 

  30. ASTM Standard G129, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking, Annual Book of ASTM Standards.03.02 (2006).

    Google Scholar 

  31. J. S. Warner, S. S. Kim, and R. P. Gangloff, Int. J. Fatigue, 31, 1952 (2009).

    Article  Google Scholar 

  32. W. Zhao, R. Xin, Z. He, and Y. Wang, Corros. Sci. 63, 387 (2012).

    Article  Google Scholar 

  33. D. A. Jones, Metall. Trans. A, 16A, 1133 (1985).

    Article  Google Scholar 

  34. S. A. Shipilov, Critical Assessment of the Rule of Cathodic Protection in Pipeline Integrity and Reliability, P. E. J. Flewitt et al. Eds., Engineering Structural Integrity Assessment, pp.155–162, Need and Provision, Sheffield (2002).

    Google Scholar 

  35. Y. G. Chun and S. I. Pyun, Fatigue Fract. Engng. Mater. Struct. 18, 661 (1995).

    Article  Google Scholar 

  36. S. H. Chung, J. K. Lim, and E. G. Na, KSME J. 3, 1 (1989).

    Google Scholar 

  37. P. Liang, X. Li, C. Dua, and X. Chen, Mater. Des. 30, 1712 (2009).

    Article  Google Scholar 

  38. D. H. Jung, J. K. Kwon, N. S. Woo, Y. J. Kim, M. Goto, and S. S. Kim, Metall. Trans. A, 45A, 654 (2014).

    Article  Google Scholar 

  39. S. Ritter and H. P. Seifert, J. Nucl. Mater. 375, 72 (2008).

    Article  Google Scholar 

  40. M. Cabrini, S. Lorenzi, P. Marcassoli, and T. Pastore, Corros. Rev. 29, 261 (2011).

    Article  Google Scholar 

  41. J. Yu, R. Brook, I. Cole, D. Morabito, and G. Demofonti, Fatigue Fract. Engng Mater. Struct. 19, 1019 (1996).

    Article  Google Scholar 

  42. B. Huneaua and J. Mendez, Int. J. Fatigue, 28, 124 (2006).

    Article  Google Scholar 

  43. M. N. Ilman, Inter. J. Fatigue, 62, 228 (2014).

    Article  Google Scholar 

  44. P. Liang, X. Li, C. Dua, and X. Chen, Mater. Des. 30, 1712 (2009).

    Article  Google Scholar 

  45. A. Torres-Islas, J. G. Gonzalez-Rodriguez, J. Uruchurtu, and S. Serna, Corros. Sci. 50, 2831 (2008).

    Article  Google Scholar 

  46. M. A. Arafin and J. A. Szpunar, Mater. Sci. Eng. A, 528, 4927 (2011).

    Article  Google Scholar 

  47. Y. J. Kim, J. K. Kwon, Y. I. Jeong, N. S. Woo, and S. S. Kim, Met. Mater. Int. 19, 19 (2013).

    Article  Google Scholar 

  48. H. J. Lee, Y. J. Kim, Y. I. Jeong, and S. S. Kim, Corros. Sci. 55, 10 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangshik Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Kwon, J., Jeong, D. et al. Effect of applied potential on fatigue crack propagation behavior of API X80 steel in seawater. Met. Mater. Int. 20, 851–858 (2014). https://doi.org/10.1007/s12540-014-5009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-5009-7

Keywords

Navigation