Skip to main content
Log in

Amphipod abundance in sediment trap samples at the long-term observatory HAUSGARTEN (Fram Strait, ∼79°N/4°E). Variability in species community patterns

  • Marine Biodiversity Under Change
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Since 2000, sediment traps have been deployed at the HAUSGARTEN (a long-term observatory established by the Alfred-Wegener-Institute for Polar and Marine Research in 1999) in the Fram Strait, (west of Spitsbergen at a water depth of 2,500 m, located in the confluence zone of the warm saline Atlantic water and water masses of polar origin) in order to investigate seasonal and inter-annual fluctuation of particle flux and the various contribution of zooplankton swimmers. Amongst these swimmers, amphipods are regularly observed occurring in a recurrent pattern and they dominate the biomass. Thus, we present data on amphipods regarding their seasonal and regional distribution pattern throughout the period 2000–2007. The most frequently observed amphipod species are Themisto libellula, T. abyssorum and T. compressa. While Themisto libellula is considered a true Arctic species associated to polar water masses, the boreal-Atlantic species Themisto abyssorum is imported into the Arctic by Atlantic water. A third species, Themisto compressa, occurred in 2004 and has been continually observed in the samples since then. The latter species has its main distribution in the warm regions of the North Atlantic and its occurrence in the Fram Strait points to the increased influence of warm Atlantic water masses. During 2000–2007, the amphipod composition in the samples has changed in favor of T. abyssorum and T. compressa. These shifts could suggest a northward movement of Atlantic species in the seasonally ice-covered area, a region of the ocean anticipated to react very sensitively to global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arndt CE, Pavlova O (2005) Origin and fate of ice fauna in the Fram Strait and Svalbard area. Mar Ecol Prog Ser 301:55–66

    Article  Google Scholar 

  • Auel H, Harjes M, Da Rocha R, Stübing D, Hagen W (2002) Lipid biomarkers indicate different ecological niches and trophic relationships of the Arctic hyperiid amphipods Themisto abyssorum and T. libellula. Polar Biol 25:374–383

    Google Scholar 

  • Barnard JL, Karaman GS (1991) The families and genera of marine gammaridean amphipods (except marine gammaroids). Records of the Australian Museum, Supplement 13

  • Bauerfeind E, Nöthig E-M, Beszczynska A, Fahl K, Kaleschke L, Kreker K, Klages M, Soltwedel T, Lorenzen C, Wegner J (2009) Particle sedimentation patterns in the eastern Fram Strait during 2000–2005: results from the Arctic long-term observatory HAUSGARTEN. Deep Sea Res I 56:1471–1487

    Article  CAS  Google Scholar 

  • Berge J, Cottier F, Last KS, Varpe O, Leu E, Soreide J, Eiane K, Falk-Petersen S, Willis K, Nygard H, Vogedes D, Griffiths C, Johnson G, Lorentzen D, Brierley AS (2009) Diel vertical migration of Arctic zooplankton during the polar night. Biol Lett 5:69–72

    Article  PubMed  Google Scholar 

  • Blachowiak-Samolyk K, Kwasniewski S, Dmoch K, Hop H, Falk-Petersen S (2007) Trophic structure of zooplankton in the Fram Strait in spring and autumn 2003. Deep Sea Res II 54:2716–2728

    Article  Google Scholar 

  • Bloesch J, Burns NM (1980) A critical review of sedimentation trap technique. Schweiz Z Hydrol 42(1):15–55

    Article  Google Scholar 

  • Bowman TE (1960) The pelagic amphipod genus Parathemisto (Hyperiidea: Hyperiidae) in the North Pacific and adjacent Arctic Ocean. Proc US Acad Sci USA 112:343–392

    Google Scholar 

  • Buchholz F, Buchholz C, Węsławski JM (2010) Ten years after: krill as indicator of changes in the macro-zooplankton communities of two Arctic fjords. Polar Biol 33:101–113

    Article  Google Scholar 

  • Buesseler KO, Antia AN, Chen M, Fowler SW, Gardner WD, Gustafsson O, Harada K, Michaels AF, Rutgers van der Loeff M, Sarin M, Steinberg DK, Trull T (2007) An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J Mar Res 65:345–416

    CAS  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth

    Google Scholar 

  • Dalpadado P (2002) Inter-specific variations in distribution, abundance and possible life-cycle patterns of Themisto spp. (Amphipoda) in the Barents Sea. Polar Biol 25:656–666

    Google Scholar 

  • Dalpadado P, Borkner N, Bogstad B, Mehl S (2001) Distribution of Themisto (Amphipoda) spp. in the Barents Sea and predator-prey interactions. ICES J Mar Sci 58:876–895

    Article  Google Scholar 

  • Dalpadado P, Yamaguchi A, Ellertsen B, Johannessen S (2008) Trophic interactions of macro-zooplankton (krill and amphipods) in the Marginal Ice Zone of the Barents Sea. Deep Sea Res Pt II 55:2266–2274

    Article  Google Scholar 

  • Dunbar MJ (1957) The determinats of production in the northern seas: a study of the biology of Themisto libellula (Mandt). Can J Zool 35:797–819

    Article  Google Scholar 

  • Dunbar MJ (1964) Serial atlas of the marine environment. Folio 6. Euphausiids and pelagic amphipods. American Geographical Society, New York

    Google Scholar 

  • Grainger EH (1989) Vertical distribution of zooplankton in the central Arctic Ocean. In: Rey L, Alexander V (eds) Proceedings of the Sixth Conference of the Comité Arctique International 13-15 May 1985. Brill, Leiden, pp 48–60

    Google Scholar 

  • Gronik S, Hopkins CCE (1984) Ecological investigations of the zooplankton community of Balsfjorden, northern Norway: Generation cycle, seasonal vertical distribution, and seasonal variations in body weight and carbon and nitrogen content of the copepod Metridia longa (Lubbock). J Exp Mar Biol Ecol 80:93–107

    Article  Google Scholar 

  • Harris R, Wiebe P, Lenz J, Skjoldal R-H, Huntley M (eds) (2000) ICES Zooplankton methodology manual. Academic, London

    Google Scholar 

  • Harvey M, Galbraith PS, Descroix A (2009) Vertical distribution and diel migration of macrozooplankton in the St. Lawrence marine system (Canada) in relation with the cold intermediate layer thermal properties. Prog Oceanogr 80:1–21

    Article  Google Scholar 

  • Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344

    Article  PubMed  Google Scholar 

  • Hop H, Falk-Petersen S, Svendsen H, Kwasniewski S, Pavlov V, Pavlova O, Søreide JE (2006) Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Prog Oceanogr 71:182–231

    Article  Google Scholar 

  • Karl DM, Knauer GA (1989) Swimmers: a recapitulation of the problem and a potential solution. Oceanogr 2:32–35

    Google Scholar 

  • Knauer GA, Martin JH, Bruland KW (1979) Fluxes of particulate carbon, nitrogen and phosphorus in the upper water column of the northeast Pacific. Deep Sea Res 26:97–108

    Article  CAS  Google Scholar 

  • Koszteyn J, Timofeev S, Węsławski JM (1995) Size structure of Themisto abyssorum (Boeck) and Themisto libellula (Mandt) populations in European Arctic Seas. Polar Biol 15:85–92

    Article  Google Scholar 

  • Kremling K, Lentz U, Zeitzschel B, Schultz-Bull DE, Duinker JC (1996) New type of time-series sediment trap for the reliable collection of inorganic and organic trace chemical substances. Rev Sci Instrum 67:4360–4363

    Article  CAS  Google Scholar 

  • Larsson U, Blomqvist S, Abrahamsson B (1986) A new sediment trap system. Mar Ecol Prog Ser 31:205–207

    Article  Google Scholar 

  • Laval P (1980) Hyperiid amphipods as crustacean parasitoids associated with gelatinous zooplankton. Oceanogr Mar Biol Annu Rev 18:11–56

    Google Scholar 

  • Lee C, Wakeham SG, Hedges JI (1988) The measurement of oceanic particle flux – are “swimmers” a problem? Oceanogr 1(2):34–36

    Google Scholar 

  • Lee C, Hedges JI, Wakeham SG, Zhu N (1992) Effectiveness of various treatments in retarding microbial activity in sediment trap material and their effects on the collection of swimmers. Limnol Oceanogr 37(1):117–130

    Article  CAS  Google Scholar 

  • Macnaughton MO, Thormar J, Berge J (2007) Sympagic amphipods in the Arctic pack ice: redescriptions of Eusirus holmii Hansen, 1887 and Pleusymtes karstensi (Barnard, 1959). Polar Biol 30:1013–1025

    Article  Google Scholar 

  • Makabe R, Hattori H, Sampei M, Ota Y, Fukuchi M, Fortier L, Sasaki H (2010) Regional and seasonal variability of zooplankton collected using sediment traps in the southeastern Beaufort Sea, Canadian Arctic. Polar Biol 33:257–270

    Article  Google Scholar 

  • Marion A, Harvey M, Chabot D, Brêthes J-C (2008) Feeding ecology and predation impact of the recently established amphipod, Themisto libellula, in the St. Lawrence marine system, Canada. Mar Ecol Prog Ser 373:53–70

    Article  Google Scholar 

  • Michaels AF, Silver MW, Gowing MM, Knauer GA (1990) Cryptic zooplankton “swimmers” in upper ocean sediment traps. Deep-Sea Res 37:1285–1296

    Article  Google Scholar 

  • Peterson ML, Hernes PJ, Thoreson DS, Hedges IH (1993) Field evaluation of a valved sediment trap. Limnol Oceanogr 38(8):1741–1761

    Article  Google Scholar 

  • Piechura J (2004) The circulation of the Nordic Seas. In: Skreslet S (ed) Jan Mayen Island in Scientific Focus. Kluwer, Netherlands, pp 91–99

    Google Scholar 

  • Piechura J, Walczowski W (2009) Warming of the West Spitsbergen Current and sea ice north of Svalbard. Oceanologia 51(2):147–164

    Google Scholar 

  • Poltermann M (1997) Biologische und ökologische Untersuchungen zur kryopelagischen Amphipodenfauna des arktischen Meereises. Ber Polarforsch 255:1–170

    Google Scholar 

  • Poltermann M (2001) Arctic sea ice as feeding ground for amphipods – food sources and strategies. Polar Biol 24:89–96

    Article  Google Scholar 

  • Poltermann M, Hop H, Falk-Petersen S (2000) Life under Arctic sea ice – reproduction strategies of two sympagic (ice-associated) amphipod species, Gammarus wilkitzkii and Apherusa glacialis. Mar Biol 136:913–920

    Article  Google Scholar 

  • Quadfasel D, Gascard J-C, Kolermann K-P (1987) Large-scale oceanography in Fram Strait during the 1984 marginal ice zone experiment. J Geophys Res 92:6719–6728

    Article  Google Scholar 

  • Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295

    Article  Google Scholar 

  • Sampei M, Sasaki H, Hattori H, Forest A, Fortier L (2009) Significant contribution of passively sinking copepods to the downward export flux in Arctic waters. Limnol Oceanogr 54(6):1894–1900

    Article  CAS  Google Scholar 

  • Schauer U, Beszczynska-Möller A, Walczowski W, Fahrbach E, Piechura J, Hansen E (2008) Variation of Measured Heat Flow Through the Fram Strait Between 1997 and 2006. In: Dickson RR, Meincke J, Rhines P (eds) Arctic–Subarctic Ocean Fluxes. Springer, Netherlands, pp 65–85

    Chapter  Google Scholar 

  • Schneppenheim R, Weigmann-Haass R (1986) Morphological and electrophoretic studies of the genus Themisto (Amphipoda: Hyperiidea) from the South and North Atlantic. Polar Biol 6:215–225

    Article  Google Scholar 

  • Seiler D, Brandt A (1997) Seasonal occurrence of planktic Crustacea in sediment trap samples at three depth horizons in the Greenland Sea. Polar Biol 17:337–349

    Article  Google Scholar 

  • Silver MW, Gowing MM (1991) The “Particle” Flux: origins and biological components. Prog Oceanogr 26:75–113

    Article  Google Scholar 

  • Tencati JR (1970) Amphipods of the central Arctic. In: Leung, YM, Kobayashi, HA (eds) Taxonomic guides to Arctic zooplankton (I), Tech Rep 2. University of Southern California, Department of Biological Sciences, pp 3-37

  • U.S. Global Ocean Flux Study (1989) Sediment trap technology and sampling. US GOFS Planning Report No. 10

  • Vallee BL, Ulmer DD (1972) Biochemical effects of Mercury, Cadmium and Lead. Annu Rev Biochem 41:91–128

    Article  PubMed  CAS  Google Scholar 

  • Vermeij GJ, Roopnarine PD (2008) The coming arctic invasion. Science 321:780–781

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov ME (1999) Deep-sea near-bottom swarms of pelagic amphipods Themisto: observations from submersibles. Sarsia 84:465–467

    Google Scholar 

  • Vinogradov ME, Volkov AF, Semenova TN (1996) Hyperiid amphipods (Amphipoda, Hyperidea) of the world oceans. Science Publishers, Lebanon, USA

    Google Scholar 

  • Wakeham SG, Hedges JI, Lee C, Pease TK (1993) Effects of poisons and preservatives on the composition of organic matter in a sediment trap experiment. J Mar Res 51:669–696

    Article  CAS  Google Scholar 

  • Walkusz W, Storemark K, Skau T, Gannefors C, Lundberg M (2003) Zooplankton community structure; a comparison of fjords, open water and ice stations in the Svalbard area. Pol Polar Res 24:149–165

    Google Scholar 

  • Wallace MI, Cottier FR, Berge J, Tarling GA, Griffiths C, Brierley AS (2010) Comparison of zooplankton vertical migration in an ice-free and seasonally ice-covered Arctic fjord: an insight into the influence of sea ice cover on zooplankton behavior. Limnol Oceanogr 55:831–845

    Article  Google Scholar 

  • Wassmann P (2008) Impacts of global warming on arctic pelagic ecosystems and processes. In: Durate CM (ed) Impacts of global warming on polar ecosystems. Fundación BBVA, Spain, pp 111–138

    Google Scholar 

  • Weigmann-Haass R (1997) Verbreitung von Makrozooplankton in der Grönlandsee im Spätherbst 1988 (Crustacea: Ostracoda, Hyperiidea [Amphipoda], Euphausiacea). Helgol Meeresunters 51:69–82

    Article  Google Scholar 

  • Wencki K (2000) Interannual variability in the occurrence of Themisto (Amphipoda) in the north Norwegian Sea. Pol Polar Res 21:143–152

    Google Scholar 

  • Werner I, Auel H, Garrity C, Hagen W (1999) Pelagic occurrence of the sympagic amphipod Gammarus wilkitzkii in ice-free waters of the Greenland Sea - dead end or part of life-cycle? Polar Biol 22:56–60

    Article  Google Scholar 

  • Węsławski JM, Legeżyńska J (2002) Life cycles of some arctic amphipods. Pol Polar Res 23(3–4):253–264

    Google Scholar 

  • Węsławski JM, Kwaśniewski S, Stempniewicz L, Błachowiak-Samołyk K (2006) Biodiversity and energy transfer to top trophic levels in two contrasting Arctic fjords. Polish Polar Res 27:259–278

    Google Scholar 

  • Williams R, Robins D (1981) Seasonal variability in abundance and vertical distribution of Parathemisto gaudichaudi (Amphipoda: Hyperiidea) in the North East Atlantic Ocean. Mar Ecol Prog Ser 4:289–298

    Article  Google Scholar 

  • Willis KJ, Cottier FR, Kwaśniewski S (2008) Impact of warm water advection on the winter zooplankton community in an Arctic fjord. Polar Biol 31:475–481

    Article  Google Scholar 

  • Wing BL (1976) Ecology of Parathemisto libellula and P. pacifica (Amphipoda: Hyperiidea) in Alaskan waters. Northwest Fisheries Center Processed Report, Seattle

    Google Scholar 

Download references

Acknowledgments

We greatly acknowledge the help of the Arctic-lab team including C. Lorenzen, S. Murawski, N. Knüppel, S. Simon and D. Freese for the tedious work of swimmer picking. We thank Prof. Dr. H. Brunken of the International Degree Course in Industrial and Environmental Biology at the University of Applied Sciences Bremen for encouraging this project. We thank the AWI-zooplankton group of Polar Biological Oceanography around Prof. Dr. U. Bathmann for their helpful comments and support. We gratefully thank three anonymous reviewers for their helpful comments that improved the initial manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelina Kraft.

Additional information

This article is part of the special issue “Marine Biodiversity under Change”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraft, A., Bauerfeind, E. & Nöthig, EM. Amphipod abundance in sediment trap samples at the long-term observatory HAUSGARTEN (Fram Strait, ∼79°N/4°E). Variability in species community patterns. Mar Biodiv 41, 353–364 (2011). https://doi.org/10.1007/s12526-010-0052-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-010-0052-1

Keywords

Navigation