Skip to main content

Advertisement

Log in

Sediment composition and its effect on the productivity in Larsemann Hills, East Antarctica

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The sediment cores collected from lakes L-8, L-10, and L-12 of Larsemann Hills, East Antarctica, were investigated for sediment components (sand, silt, clay, total organic carbon, total nitrogen, total phosphorus, elemental TOC/TN ratio, and biogenic silica or biogenic opal), major elements (Al, Fe, Mn, Ti, Mg, Ca), and trace metals (Cr, Co, Zn, Cd, Pb, Ba, Cu, Ni) to understand the source, processes, and productivity in the lacustrine sediments. In lake L-10, average sand content was higher than in lakes L-8 and L-12 which indicated the high intensity of mechanical weathering, resulted in releasing coarse-grained material from the rocks in the catchment area. High Ti/Al molar ratios (2.00–3.32) in all the three cores resulted from shorter transportation distance from different parent sources. Higher clay content near the surface in all the three lakes indicated deposition of fine-grained particles supplied by ice-melt water owing to ice-free conditions in the area in recent years. Relatively, higher biogenic silica along with high total organic carbon associated with high clay in the upper section of lakes L-10 and L-12 and middle section of core L-8 indicated deposition of finer particles from suspension which facilitated high primary productivity due to exposure of the lakes to the ice-melt water influx. Further, Mg/Ca ratio in all the three lakes was high near the surface indicating enrichment of biogenic sedimentation. C/N ratio was found to be much less than 10, indicating the major source of organic matter is autochthonous and exclusively derived from algae (C/N < 10) in all the cores. The metal concentration was found to be higher in core L-8 and was found to be associated with finer sediments, as compared to cores L-10 and L-12 where coarser sediments must have diluted the metal content. Ba was found to be of biogenic origin in cores L-8 and L-12 while in core L-10 it was of lithogenic origin. Cd, Zn, and Ni in all the three lakes were found to be mainly of biogenic origin, whereas all other metals studied were of lithogenic origin. Thus, the concentration of trace metals in Larsemann Hill lake sediments is entirely by natural processes regulated by lithology, catchment processes, and climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong-Altrin JS (2009) Provenance of sands from Cazones, Acapulco, and Bahia Kino beaches, Mexico. Rev Mex Cienc Geol 26(3)

  • Armstrong-Altrin JS, Nagarajan R, Balaram V, Natalhy-Pineda O (2015) Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, Western Gulf of Mexico, Mexico: constraints on provenance and tectonic setting. J S Am Earth Sci 64:199–216

    Article  Google Scholar 

  • Armstrong-Altrin JS, Lee YI, Kasper-Zubillaga JJ, Trejo-Ramirez E (2017) Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: implications for palaeoweathering, provenance, and tectonic setting. Geol J 52(4):559–582

    Article  Google Scholar 

  • Armstrong-Altrin JS, Ramos-Vázquez MA, Zavala-Leon AC, Montiel-Garcia PC (2018) Provenance discrimination between Atasta and Alvarado beach sands, western Gulf of Mexico, Mexico: constraints from detrital zircon chemistry and U–Pb geochronology. Geol J. https://doi.org/10.1002/gj.3122

  • Asthana R, Shrivastava PK, Beg MJ, Swain AK, Dharwadkar A, Roy SK, Srivastava HB (2013) Sedimentary processes in two different polar periglacial environments: examples from Schirmacher Oasis and Larsemann Hills, East Antarctica. Geol Soc Lond Spec Publ 381(1):411–427

    Article  Google Scholar 

  • Beg MJ, Asthana R (2013) Geological studies in the Larsemann Hills, Ingrid Christensen Coast, East Antarctica. Twenty Fourth Indian Antarctic Expedition 2003–2005 Ministry of Earth Sciences, Tech Pub 22:363–367

  • Bockheim JG (2015) The soils of Antarctica. Springer, p 322

  • Boyle EA, Sclater FR, Edmond JM (1977) The distribution of dissolved copper in the Pacific. Earth Planet Sci Lett 37(1):38–54

    Article  Google Scholar 

  • Bradtmiller LI, Anderson RF, Fleisher MQ, Burckle LH (2006) Diatom productivity in the equatorial Pacific Ocean from the last glacial period to the present: a test of the silicic acid leakage hypothesis. Palaeoceanography 21(4)

  • Bruland KW, Franks RP (1983) Mn, Ni, Cu, Zn and Cd in the western North Atlantic. In: Trace metals in seawater, Springer, US, pp 395–414

    Chapter  Google Scholar 

  • Chan LH, Drummond D, Edmond JM, Grant B (1977) On the barium data from the Atlantic GEOSECS expedition. Deep-Sea Res 24(7):613–649

    Article  Google Scholar 

  • Chase Z, Anderson RF, Fleisher MQ, Kubik PW (2003) Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years. Deep-Sea Res II Top Stud Oceanogr 50(3):799–832

    Article  Google Scholar 

  • Chen HF, Song SR, Lee TQ, Lowemark L, Chi ZQ, Wang Y, Hong E (2010) A multiproxy lake record from Inner Mongolia displays a late Holocene teleconnection between central Asian and North Atlantic climate. Quat Int 227:170–183

    Article  Google Scholar 

  • Chen HF, Chang YP, Kao SJ, Chen MT, Song SR, Kuo LW, Wen SY, Yang TN, Lee TQ (2011) Mineralogical and geochemical investigations of sediment-source region changes in the Okinawa Trough during the past 100ka (IMAGES core MD012404). J Asian Earth Sci 40(6):1238–1249

    Article  Google Scholar 

  • Chen HF, Yeh PY, Song SR, Hsu SC, Yang TN, Wang Y, Chi Z, Lee TQ, Chen MT, Cheng CL, Zou J (2013) The Ti/Al molar ratio as a new proxy for tracing sediment transportation processes and its application in aeolian events and sea level change in East Asia. J Asian Earth Sci 73:31–38

    Article  Google Scholar 

  • Choudhary S, Tiwari AK, Nayak GN, Bejugam P (2018) Sedimentological and geochemical investigations to understand source of sediments and processes of recent past in Schirmacher Oasis, East Antarctica. Polar Sci 15:87–98

    Article  Google Scholar 

  • Collier R, Edmond J (1984) The trace element geochemistry of marine biogenic particulate matter. Prog Oceanogr 13(2):113–199

    Article  Google Scholar 

  • Cremer H, Heiri O, Wagner B, Wagner-Cremer F (2007) Abrupt climatic warming in East Antarctica during the early Holocene. Quat Sci Rev 26:2012–2018

    Article  Google Scholar 

  • Curry WB, Cullen JL (1997) Carbonate production and dissolution in the western equatorial Atlantic during the last 1 m.y. Proc Ocean Drill Program Sci Results 154:189–199

    Google Scholar 

  • Dore JE, Priscu JC (2001) Phytoplankton phosphorus deficiency and alkaline phosphatase activity in the McMurdo Dry Valley lakes, Antarctica. Limnol Oceanogr 46(6):1331–1346

    Article  Google Scholar 

  • Downing JA, McCauley E (1992) The nitrogen: phosphorus relationship in lakes. Limnol Oceanogr 37(5):936–945

    Article  Google Scholar 

  • Fagel N, Thamo-Bozso E, Heim B (2007) Mineralogical signatures of Lake Baikal sediments: sources of sediment supplies through late Quaternary. Sediment Geol 194(1):37–59

    Article  Google Scholar 

  • Falkowski PG (2000) Rationalizing elemental ratios in unicellular algae. J Phycol 36:3–6

    Article  Google Scholar 

  • Feng S, Xue Z, Chi W (2008) Topographic features around Zhongshan Station, southeast of Prydz Bay. China J Oceanol Limnol 26(4):469–474

    Article  Google Scholar 

  • Folk RL (1968) Petrology of sedimentary rocks. Hemphill, Austin, p 177

  • Forsberg C (1980) Eutrophication parameters and trophic state indices in 30 Swedish waste-receiving lakes. Arch Hydrobiol 89:189–207

    Google Scholar 

  • Gasparon M, Burgess JS (1999) Human impacts in Antarctica: trace-element geochemistry of freshwater lakes in the Larsemann Hills, East Antarctica. Environ Geol 39(9):963–976

    Article  Google Scholar 

  • Gasparon M, Matschullat J (2006) Trace metals in Antarctic ecosystems: results from the Larsemann Hills, East Antarctica. Appl Geochem 21(9):1593–1612

    Article  Google Scholar 

  • Gasparon M, Lanyon R, Burgess JS, Sigurdsson IA (2002) The freshwater lakes of the Larsemann Hills, East Antarctica: chemical characteristics of the water column. ANARE Rep

  • Gillieson D, Burgess J, Spate A, Cochrane A (1990) An atlas of the lakes of the Larsemann Hills, Princess Elizabeth Land, Antarctica. Australian National Antarctic Research Expeditions Research Notes 74(3)

  • Govil P, Mazumder A, Tiwari A, Kumar S (2011) Holocene climate variability from Lake sediment core in Larsemann Hills, Antarctica. J Geol Soc India 78(1):30–35

    Article  Google Scholar 

  • Govil P, Mazumder A, Asthana R, Tiwari A, Mishra R (2016) Holocene climate variability from the lake sediment core in Schirmacher Oasis region, East Antarctica: multiproxy approach. Quat Int 425:453–463

    Article  Google Scholar 

  • Harrison PJ, Conway HL, Holmes RW, Davis CO (1977) Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida. Mar Biol 43(1):19–31

    Article  Google Scholar 

  • Harrison PJ, Khan N, Yin K, Saleem M, Bani N, Nisa M, Ahmed SI, Rizvi N, Azam F (1997) Nutrient and phytoplankton dynamics in two mangrove tidal creeks of the Indus River Delta, Pakistan. Mar Ecol Prog Ser 157:13–19

    Article  Google Scholar 

  • Hawes I (1983) Nutrients and their effects on phytoplankton populations in lakes on Signy Island, Antarctica. Polar Biol 2(2):115–126

    Article  Google Scholar 

  • Hedges JI, Clark WA, Quay PD, Richey JE, Devol AH, Santos UDM (1986) Compositions and fluxes of particulate organic material in the Amazon River. Limnol Oceanogr 31(4):717–738

    Article  Google Scholar 

  • Hellstrom T (1996) An empirical study of nitrogen dynamics in lakes. Water Environ Res 68(1):55–65

    Article  Google Scholar 

  • Hernandez-Hinojosa V, Montiel-Garcia PC, Armstrong-Altrin JS, Nagarajan R, Kasper-Zubillaga JJ (2018) Textural and geochemical characteristics of beach sands along the western Gulf of Mexico, Mexico. Carpathian J Earth Environ Sci 13(1):161–174

    Google Scholar 

  • Hodgson DA, Noon PE, Vyverman W, Bryant CL, Gore DB, Appleby P, Gilmour M, Verleyen E, Sabbe K, Jones VJ, Ellis-Evans JC (2001) Were the Larsemann Hills ice-free through the last glacial maximum? Antarct Sci 13(4):440–454

    Article  Google Scholar 

  • Hodgson DA, Verleyen E, Sabbe K, Squier AH, Keely BJ, Leng MJ, Saunders KM, Vyverman W (2005) Late Quaternary climate-driven environmental change in the Larsemann Hills, East Antarctica, multi-proxy evidence from a lake sediment core. Quat Res 64(1):83–99

    Article  Google Scholar 

  • Hodgson DA, Roberts D, McMinn A, Verleyen E, Terry B, Corbett C, Vyverman W (2006) Recent rapid salinity rise in three East Antarctic lakes. J Paleolimnol 36:385–406

    Article  Google Scholar 

  • Hodgson DA, Roberts SJ, Bentley MJ, Carmichael EL, Smith JA, Verleyen E, Vyverman W, Geissler P, Leng MJ, Sanderson DC (2009) Exploring former subglacial Hodgson Lake, Antarctica. Paper II: palaeolimnology. Quat Sci Rev 28(23):2310–2325

    Article  Google Scholar 

  • Holz C, Stuut JBW, Henrich R, Meggers H (2007) Variability in terrigenous sedimentation processes off Northwest Africa and its relation to climate changes: inferences from grain-size distributions of a Holocene marine sediment record. Sediment Geol 202(3):499–508

    Article  Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. Prentice Hall, New York

    Google Scholar 

  • Jarvis I, Jarvis KE (1985) Rare-earth element geochemistry of standard sediments: a study using inductively coupled plasma spectrometry. Chem Geol 53(3–4):335–344

    Article  Google Scholar 

  • Kashiwaya K, Ochiai S, Sakai H, Kawai T (2001) Orbit-related long-term climate cycles revealed in a 12-Myr continental record from Lake Baikal. Nature 410(6824):71–74

    Article  Google Scholar 

  • Kurian S, Nath BN, Kumar NC, Nair KKC (2013) Geochemical and isotopic signatures of surficial sediments from the western continental shelf of India: inferring provenance, weathering, and the nature of organic matter. J Sediment Res 83(6):427–442

    Article  Google Scholar 

  • Lamb AL, Wilson GP, Leng MJ (2006) A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth Sci Rev 75(1):29–57

    Article  Google Scholar 

  • Lawrence MJF, Hendy CH (1985) Water column and sediment characteristics of Lake Fryxell, Taylor Valley, Antarctica. N Z J Geol Geophys 28(3):543–552

    Article  Google Scholar 

  • Mahesh BS, Warrier AK, Mohan R, Tiwari M, Babu A, Chandran A, Asthana R, Ravindra R (2015) Response of Long Lake sediments to Antarctic climate: a perspective gained from sedimentary organic geochemistry and particle size analysis. Polar Sci 9(4):359–367

    Article  Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114(3–4):289–302

    Article  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27(5):213–250

    Article  Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34(2):261–289

    Article  Google Scholar 

  • Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments—volume II: physical and chemical techniques. Springer, Dordrecht, pp 239–269

    Google Scholar 

  • Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep Sea Res A 36(9):1415–1426

    Article  Google Scholar 

  • Muller PJ, Schneider R (1993) An automated leaching method for the determination of opal in sediments and particulate matter. Deep-Sea Res I Oceanogr Res Pap 40(3):425–444

    Article  Google Scholar 

  • Murphy JAMES, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  Google Scholar 

  • NCAOR (2006) Draft Comprehensive Environmental Evaluation (CEE) of New Indian Research Base at Larsemann Hills, Antarctica. National Centre for Antarctic and Ocean Research, Ministry of Earh Sciences, Government of India, Headland Sada, Goa

  • Paytan A, Kastner M (1996) Benthic Ba fluxes in the central equatorial Pacific, implications for the oceanic Ba cycle. Earth Planet Sci Lett 142(3–4):439–450

    Article  Google Scholar 

  • Peck JA, Green RR, Shanahan T, King JW, Overpeck JT, Scholz CA (2004) A magnetic mineral record of Late Quaternary tropical climate variability from Lake Bosumtwi, Ghana. Palaeogeogr Palaeoclimatol Palaeoecol 21:37–57

    Article  Google Scholar 

  • Phartiyal B (2014) Holocene paleoclimatic variation in the Schirmacher Oasis, East Antarctica: a mineral magnetic approach. Polar Sci 8(4):357–369

    Article  Google Scholar 

  • Prahl FG, Ertel JR, Goni MA, Sparrow MA, Eversmeyer B (1994) Terrestrial organic carbon contributions to sediments on the Washington margin. Geochim Cosmochim Acta 58(14):3035–3048

    Article  Google Scholar 

  • Priscu JC, Foreman CM (2009) Encyclopedia of inland waters. In: Likens GE (ed) Lakes of Antarctica, vol 2. Elsevier Press, Oxford

    Google Scholar 

  • Reddy KR, Kadlec RH, Flaig E, Gale PM (1999) Phosphorus retention in streams and wetlands: a review. Crit Rev Environ Sci Technol 29(1):83–146

    Article  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. James Johnstone memorial volume: University press of Liverpool, pp 176–192

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46(3):205–221

    Google Scholar 

  • Roberts D, McMinn A (1999) A diatom-based palaeosalinity history of Ace Lake, Vestfold Hills, Antarctica. Holocene 9(4):401–408

    Article  Google Scholar 

  • Rubio B, Nombela MA, Vilas F (2000) Geochemistry of major and trace elements in sediments of the Ria De Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 40(11):968–980

    Article  Google Scholar 

  • Schenau SJ, De Lange GJ (2001) Phosphorus regeneration vs. burial in sediments of the Arabian Sea. Mar Chem 75(3):201–217

    Article  Google Scholar 

  • Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33:702–724

    Google Scholar 

  • Shen Z, Bloemendal J, Mauz B, Chiverrell RC, Dearing JA, Lang A, Liu Q (2008) Holocene environmental reconstruction of sediment-source linkages at Crummock Water, English Lake District, based on magnetic measurements. Holocene 18(1):129–140

    Article  Google Scholar 

  • Shepard FP (1954) Nomenclature based on sand-silt-clay ratios. J Sediment Petrol 24:151–158

    Article  Google Scholar 

  • Shimmield GB, Pedersen TF (1990) The geochemistry of reactive trace-metals and halogens in hemipelagic continental-margin sediments. Rev Aquat Sci 3(2–3):255–279

    Google Scholar 

  • Simmons GM Jr, Wharton RA Jr, McKay CP, Nedell S, Clow G (1986) Sand/ice interactions and sediment deposition in perennially ice-covered Antarctic lakes. Antarct J US 21(5):217–220

    Google Scholar 

  • Smith JA, Hodgson DA, Bentley MJ, Verleyen E, Leng MJ, Roberts SJ (2006) Limnology of two Antarctic epishelf lakes and their potential to record periods of ice shelf loss. J Paleolimnol 35(2):373–394

    Article  Google Scholar 

  • Spaulding SA, McKnight DM, Stoermer EF, Doran PT (1997) Diatoms in sediments of perennially ice-covered Lake Hoare, and implications for interpreting lake history in the McMurdo dry valleys of Antarctica. J Paleolimnol 17(4):403–420

    Article  Google Scholar 

  • Statsoft (1999) Statistica computer programme, version 5.5. Statsoft, Tulsa

    Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, pp 80–134

  • Sun WP, Hu CY, Weng HX, Han ZB, Shen C, Pan JM (2013) Sources and geographic heterogeneity of trace metals in the sediments of Prydz Bay, East Antarctica. Polar Res 32

  • Talbot MR, Johannessen T (1992) A high-resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet Sci Lett 110(1):23–37

    Article  Google Scholar 

  • Torres ME, Brumsack HJ, Bohrmann G, Emeis KC (1996) Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chem Geol 127(1–3):125–139

    Article  Google Scholar 

  • Tribovillard N, Bout-Roumazeilles V, Riboulleau A, Baudin F, Danelian T, Riquier L (2011) Transfer of germanium to marine sediments: insights from its accumulation in radiolarites and authigenic capture under reducing conditions. Some examples through geological ages. Chem Geol 282(3):120–130

    Article  Google Scholar 

  • Turner J, Pendlebury S (2004) The international Antarctic weather forecasting handbook. British Antarctic Survey, Cambridge, p 663

    Google Scholar 

  • Tyrrell T, Law CS (1997) Low nitrate: phosphate ratios in the global ocean. Nature 387(6635):793–796

    Article  Google Scholar 

  • Ulen B (1978) Seston and sediment in Lake Norrviken. Seston composition and sedimentation. Schweiz Z Hydrol 40:262–286

    Google Scholar 

  • Van Os BJ, Middelburg JJ, de Lange GJ (1991) Possible diagenetic mobilization of barium in sapropelic sediment from the eastern Mediterranean. Mar Geol 100(1–4):125–136

    Google Scholar 

  • Verleyen E, Hodgson DA, Sabbe K, Vyverman W (2004) Late Quaternary deglaciation and climate history of the Larsemann Hills (East Antarctica). J Quat Sci 19(4):361–375

    Article  Google Scholar 

  • Verleyen E, Hodgson DA, Sabbe K, Cremer H, Emslie SD, Gibson J, Hall B, Imura S, Kudoh S, Marshall GJ, McMinn A (2011) Post-glacial regional climate variability along the East Antarctic coastal margin—evidence from shallow marine and coastal terrestrial records. Earth Sci Rev 104(4):199–212

    Article  Google Scholar 

  • Von Breymann MT, Emeis KC, Suess E (1992) Water depth and diagenetic constraints on the use of barium as a palaeoproductivity indicator. Geol Soc Lond Spec Publ 64(1):273–284

    Article  Google Scholar 

  • Walkey A (1947) A critical examination of a rapid method for determining organic carbon in soils—effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63(4):251–264

    Article  Google Scholar 

  • Warrier AK, Mahesh BS, Mohan R, Shankar R, Asthana R, Ravindra R (2014) Glacial-interglacial climatic variations at the Schirmacher Oasis, East Antarctica: the first report from environmental magnetism. Palaeogeogr Paleoclimatol Palaeoecol 412:249–260

    Article  Google Scholar 

  • Whitlock C, Dean W, Rosenbaum J, Stevens L, Fritz S, Bracht B, Power M (2008) A 2650-year-long record of environmental change from northern Yellowstone National Park based on a comparison of multiple proxy data. Quat Int 188(1):126–138

    Article  Google Scholar 

  • Yoon H, Khim B, Lee K, Park Y, Yoo K (2006) Reconstruction of postglacial palaeoproductivity in Long Lake, King George Island, West Antarctica. Polish Polar Res 27(3):189–206

    Google Scholar 

  • Yu Y, Song J, Li X, Yuan H, Li N, Duan L (2013) Environmental significance of biogenic elements in surface sediments of the Changjiang estuary and its adjacent areas. J Environ Sci 25(11):2185–2195

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Director, National Centre for Antarctic and Ocean Research (NCAOR), Goa, for providing the opportunity to participate to one of the authors (SC) in 34th Indian Scientific Expedition to Antarctica (ISEA) and Ministry of Earth Sciences (MOES) for providing the logistic support required for the collection of samples. One of the authors (GNN) thanks Inter-University Accelerator Centre (IUAC) for sanctioning a research project UFR/55317 under which this research was carried out. The author (SC) thank the University Grant Commission (UGC) for providing fellowship. The authors thank Dr. Waliur Rehman, Scientist-D ESSO-NCAOR, Goa, and Ms. Lathika N. Padmanabhan, Scientist, ESSO-NCAOR, Goa, for their assistance in the metal analysis. Dr. Manish Tiwari, Scientist ESSO-NCAOR, Goa, and Mr. Siddesh Nagoji, ESSO-NCAOR, Goa, are thanked for kindly extending the instrumental facility of the elemental analyzer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapati Nayak.

Electronic supplementary material

ESM 1

(PDF 307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, S., Nayak, G., Tiwari, A.K. et al. Sediment composition and its effect on the productivity in Larsemann Hills, East Antarctica. Arab J Geosci 11, 416 (2018). https://doi.org/10.1007/s12517-018-3755-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3755-4

Keywords

Navigation