Skip to main content
Log in

Disorder of trafficking system of plasma membrane and vacuole antiporter proteins causes hypersensitive response to salinity stress in Arabidopsis Thaliana

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Rab GTPases play an important role in regulating intracellular vesicular trafficking in eukaryotic cells. Previously, we found that Oryza sativa rice Rab11 (OsRab11) is required for the regulation of vesicular trafficking from the trans- Golgi network (TGN) to the plasma membrane (PM) and/or vacuoles. To further elucidate the relationship between vesicular trafficking and abiotic and biotic stresses, we determined OsRab11 expression levels under several environmental stress conditions. OsRab11 expression was induced by pathogens, jasmonic acid (JA), and high salt treatment. Under high salt conditions, dominant negative OsRab11(S28N) mutant plants exhibited a hypersensitive phenotype similar to that of sos1-1, whereas overexpressed-OsRab11 plants showed resistance to high salt stress. When the expression of vacuolar and PM Na+/H+ antiporter genes such as AtNHX1, AtNHX2, and AtSOS1 was examined, there was no significant difference between the wild-type and OsRab11(S28N) mutant plants. However, PM trafficking of AtSOS1-green fluorescent protein (GFP) in 35S::AtSOS1-GFP sos1-1 plants was severely impaired by T7-OsRab11(S28N) expression. Similarly, vacuolar trafficking of AtNHX2-GFP was inhibited by T7-OsRab11 (S28N) expression. These results indicate that trafficking of PM and vacuolar antiporter proteins by OsRab11 is important for high salt stress resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal PK, Agarwal P, Jain P, Jha B, Reddy MK, Sopory SK (2008) Constitutive overexpression of a stress-inducible small GTPbinding protein PgRab7 from Pennisetum glaucum enhances abiotic stress tolerance in transgenic tobacco. Plant Cell Rep 27:105–115

    Article  CAS  PubMed  Google Scholar 

  • Asaoka R, Uemura T, Ito J, Fujimoto M, Ito E, Ueda T, Nakano A (2013) Arabidopsis RABA1 GTPases are involved in transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance. Plant J 73:240–249

    Article  CAS  PubMed  Google Scholar 

  • Batoko H, Zheng HQ, Hawes C, Moore I (2000) A rab1 GTPase is required for transport between the endoplasmic reticulum and golgi apparatus and for normal golgi movement in plants. Plant Cell 12:2201–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolte S, Schiene K, Dietz KJ (2000) Characterization of a small GTPbinding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress. Plant Mol Biol 42:923–936

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Chen CY, Glaven RH, de Graaf BH, Vidali L, Hepler PK, Wu HM (2002) Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the Golgi bodies and is important to pollen tube growth. Plant Cell 14:945–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong MJ, Lee Y, Son YS, Im CH, Yi YB, Rim YG, Bahk JD, Heo JB (2013) Rice Rab11 is required for JA-mediated defense signaling. Biochem Biophys Res Commun 434:797–802

    Article  CAS  PubMed  Google Scholar 

  • Kang JG, Yun J, Kim DH, Chung KS, Fujioka S, Kim JI, Dae HW, Yoshida S, Takatsuto S, Song PS, Park CM (2001) Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell 105:625–636

    Article  CAS  PubMed  Google Scholar 

  • Kwon SI, Cho HJ, Bae K, Jung JH, Jin HC, Kim O (2009) Role of an Arabidopsis Rab GTPase RabG3b in Pathogen Response and Leaf Senescence. J Plant Biol 52:79–87

    Article  CAS  Google Scholar 

  • Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazel A, Leshem Y, Tiwari BS, Levine A (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol 134:118–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikami K, Ichimura K, Iuch S, Yamaguchi-Shinozaki K, Shinozaki K (1997) Molecular characterization of a cDNA encoding a novel small GTP-binding protein from Arabidopsis thaliana. Biochimica et Biophysica Acta 1354:99–104

    Article  CAS  PubMed  Google Scholar 

  • Nicolas C, Nicolas G, Rodriguez D (1998) Transcripts of a gene, encoding a small GTP-binding protein from Fagus sylvatica, are induced by ABA and accumulated in the embryonic axis of dormant seeds. Plant Mol Biol 36:487–491

    Article  CAS  PubMed  Google Scholar 

  • Novick P, Zerial M (1997) The diversity of Rab proteins in vesicle transport. Current Opinion in Cell Biology 9:496–504

    Article  CAS  PubMed  Google Scholar 

  • O'Mahony PJ, Oliver MJ (1999) Characterization of a desiccationresponsive small GTP-binding protein (Rab2) from the desiccationtolerant grass Sporobolus stapfianus. Plant Mol Biol 39:809–821

    Article  PubMed  Google Scholar 

  • Pereira-Leal JB, Seabra MC (2001) Evolution of the Rab family of small GTP-binding proteins. Journal of Molecular Biology 313:889–901

    Article  CAS  PubMed  Google Scholar 

  • Sano H, Ohashi Y (1995) Involvement of small GTP-binding proteins in defense signal-transduction pathways of higher plants. Proc Natl Acad Sci 92:4138–4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97:6896–6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohn EJ, Kim ES, Zhao M, Kim SJ, Kim H, Kim YW, Lee YJ, Hillmer S, Sohn U, Jiang L, Hwang I (2003) Rha1, an Arabidopsis Rab5 homolog, plays a critical role in the vacuolar trafficking of soluble cargo proteins. Plant Cell 15:1057–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terryn N, Van Montagu M, Inze D (1993) GTP-binding proteins in plants. Plant Mol Biol 22:143–152

    Article  CAS  PubMed  Google Scholar 

  • Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131:1191–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SJ, Ding L, Zhu JK (1996) SOS1, a Genetic Locus Essential for Salt Tolerance and Potassium Acquisition. Plant Cell 8:617–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    Article  CAS  PubMed  Google Scholar 

  • Yun HR, Rim YG, Heo JB (2016) Rice small GTPase Rab11 is required for intracellular trafficking from the trans-Golgi-network to the plasma membrane and/or prevacuolar compartments. Appl Biol Chem 59:163–171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Bok Heo.

Electronic supplementary material

12374_2017_42_MOESM1_ESM.pptx

Disorder of Trafficking System of Plasma Membrane and Vacuole Antiporter Proteins Causes Hypersensitive Response to Salinity Stress in Arabidopsis Thaliana

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Chen, C., Yun, H.R. et al. Disorder of trafficking system of plasma membrane and vacuole antiporter proteins causes hypersensitive response to salinity stress in Arabidopsis Thaliana . J. Plant Biol. 60, 380–386 (2017). https://doi.org/10.1007/s12374-017-0042-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-017-0042-y

Keywords

Navigation