Skip to main content
Log in

The Cerebellum, Cerebellar Disorders, and Cerebellar Research—Two Centuries of Discoveries

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Research on the cerebellum is evolving rapidly. The exquisiteness of the cerebellar circuitry with a unique geometric arrangement has fascinated researchers from numerous disciplines. The painstaking works of pioneers of these last two centuries, such as Rolando, Flourens, Luciani, Babinski, Holmes, Cajal, Larsell, or Eccles, still exert a strong influence in the way we approach cerebellar functions. Advances in genetic studies, detailed molecular and cellular analyses, profusion of brain imaging techniques, emergence of behavioral assessments, and reshaping of models of cerebellar function are generating an immense amount of knowledge. Simultaneously, a better definition of cerebellar disorders encountered in the clinic is emerging. The essentials of a trans-disciplinary blending are expanding. The analysis of the literature published these last two decades indicates that the gaps between domains of research are vanishing. The launch of the society for research on the cerebellum (SRC) illustrates how cerebellar research is burgeoning. This special issue gathers the contributions of the inaugural conference of the SRC dedicated to the mechanisms of cerebellar function. Contributions were brought together around five themes: (1) cerebellar development, death, and regeneration; (2) cerebellar circuitry: processing and function; (3) mechanisms of cerebellar plasticity and learning; (4) cerebellar function: timing, prediction, and/or coordination?; (5) anatomical and disease perspectives on cerebellar function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303

    PubMed  Google Scholar 

  2. Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Neurosci 21:370–375

    PubMed  CAS  Google Scholar 

  3. Voogd J (2003) The human cerebellum. J Chem Neuroanat 26:243–252

    PubMed  Google Scholar 

  4. Rossi F, Tempia F (2006) Unravelling the Purkinje neuron. Cerebellum 5:75–76

    PubMed  Google Scholar 

  5. Colin F, Ris L, Godaux E (2002) Neuroanatomy of the cerebellum. In: The cerebellum and its disorders. Cambridge University Press, Cambridge, pp 6–29

    Google Scholar 

  6. Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  7. Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Google Scholar 

  8. Marr D (1969) A theory of cerebellar cortex. J Physiol (Lond) 202:437–470

    CAS  Google Scholar 

  9. Allen GI, Tsukahara N (1974) Cerebrocerebellar communication systems. Physiol Rev 54:957–1005

    PubMed  CAS  Google Scholar 

  10. Hawkes R, Blyth S, Chokkan V, Tano D, Ji Z, Mascher C (1993) Structural and molecular compartmentation in the cerebellum. Can J Neurol Sci 20(Suppl 3):S29–S35

    PubMed  Google Scholar 

  11. Rolando L (1809) Saggio sopra la vera struttura del cervello dell’uomo e degli animali a sopra le funzioni del sistema nervosa. Stampeia da SSRM Privilegiata, Sassari

    Google Scholar 

  12. Fodera M (1823) Recherches expérimentales sur le système nerveux. J Physiol Exp Pathol 3:191–217

    Google Scholar 

  13. Flourens MJP (1824) Recherches expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertébrés. Crevot, Paris

    Google Scholar 

  14. Saucerotte N (1801) Mélanges de chirurgie. Gay, Paris

    Google Scholar 

  15. Magendie F (1824) Mémoires sur les fonctions de quelques parties du système nerveux. J Physiol Exp Pathol 4:399–407

    Google Scholar 

  16. Wagner R (1860) Kritische und experimentelle untersuchungen über die hirnhunktionen des gehirns. Gôttingische gelehrte anzeigen 4:25–40

    Google Scholar 

  17. Luciani L (1891) Il cervelletto. Nuovi studi di fisiologia normale e patologica. Le Monnier, Firenze

    Google Scholar 

  18. Lugaro E (1894) Sulle connessioni tra gli elementi nervosi della corteccia cerebellare. Riv Sper Freniat 10:297

    Google Scholar 

  19. Babinski J (1899) De l’asynergie cérébelleuse. Rev Neurol 7:806–816

    Google Scholar 

  20. Babinski J (1902) Sur le rôle du cervelet dans les actes volitionnels nécessitant une succession rapide de mouvements (diadococinésie). Rev Neurol 10:1013–1015

    Google Scholar 

  21. Babinski J (1906) Asynergie et inertie cérébelleuse. Rev Neurol 14:685–686

    Google Scholar 

  22. Sherrington CS (1900) The cerebellum. In: Schäfer EA (ed) Textbook of physiology. Young J Pentland 2:893–910

  23. Bolk L (1906) Das cerebellum der säugetiere. De Erven F. Bohn, Haarlem

  24. Holmes G (1904) On certain tremors in organic brain lesions. Brain 27:327–375

    Google Scholar 

  25. Holmes G (1917) The symptoms of acute cerebellar injuries from gunshot wounds. Brain 40:461–535

    Google Scholar 

  26. Holmes G (1922) The Croonian lectures on the clinical symptoms of cerebellar disease and their interpretation. Lancet 1:1177–1182

    Google Scholar 

  27. Holmes G (1939) The cerebellum of man. Brain 62:1–30

    Google Scholar 

  28. Ramon y Cajal S (1911) Histologie du système nerveux de l’homme et des vertébrés II. Institute Ramon y Cajal, Madrid

    Google Scholar 

  29. Allen WF (1924) Distribution of fibers originating from the different basal cerebellar nuclei. J Comp Neurol 36:399–343

    Google Scholar 

  30. Larsell O (1937) The cerebellum. A review and interpretation. Arch Neurol Psychiatric 38:580–607

    Google Scholar 

  31. Moruzzi G (1947) Sham rage and localized autonomic responses elicited by cerebellar stimulation in the acute thalamic cat. Proc XVII Internat Congr Physiol, Oxford, pp 114–115

    Google Scholar 

  32. Andersen P, Eccles JC (1963) Inhibitory synapses on somas of Purkinje cells in the cerebellum. Nature 199:655–656

    PubMed  CAS  Google Scholar 

  33. Eccles JC, Llinas R, Sasaki K (1964) Golgi cell inhibition in the cerebellar cortex. Nature 204:1265–1266

    PubMed  CAS  Google Scholar 

  34. Voogd J (1964) The cerebellum of the cat. Thesis, University of Leiden

  35. Voogd J, Hess DT, Marani E (1987) The parasagittal zonation of the cerebellar cortex in cat and monkey: topography, distribution of acetylcholinesterase, and development. In: King JS (ed) New concepts in cerebellar neurobiology. Liss AR, New York, pp 183–220

    Google Scholar 

  36. Gilman S, Mc Donald WI (1967) Cerebellar facilitation of muscle spindle activity. J Neurophysiol 30:1494–1512

    PubMed  CAS  Google Scholar 

  37. Gilman S (1969) Fusimotor fiber responses in the decerebellate cat. Brain Res 14:218–221

    PubMed  CAS  Google Scholar 

  38. Heath RG, Cox AW, Lustick LS (1974) Brain activity during emotional states. Am J Psychiatry 131:858–862

    PubMed  CAS  Google Scholar 

  39. Heath RG, Dempesy CW, Fontana CJ, Myers WA (1978) Cerebellar stimulation: effects on septal region, hippocampus, and amygdala of cats and rats. Biol Psychiatry 13:501–529

    PubMed  CAS  Google Scholar 

  40. Llinas R, Baker R, Sotelo C (1974) Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol 37:560–571

    PubMed  CAS  Google Scholar 

  41. Robinson DA (1976) Adaptive gain control of vestibule-ocular reflex by the cerebellum. J Neurophysiol 39:954–969

    PubMed  CAS  Google Scholar 

  42. Oscarsson O (1976) Spatial distribution of climbing and mossy fibre inputs into the cerebellar cortex. In: Creutzfeldt O (ed) Afferent and intrinsic organization of laminated structures in the brain. Springer, Berlin, pp 34–42

    Google Scholar 

  43. Gilbert PFC, Thach WT (1977) Purkinje cell activity during motor learning. Brain Res 128:309–328

    PubMed  CAS  Google Scholar 

  44. McCormick DA, Clark GA, Lavond DG, Thompson RF (1982) Initial localization of the memory trace for a basic form of learning. Proc Natl Acad Sci U S A 79:2731–2735

    PubMed  CAS  Google Scholar 

  45. Ito M, Kano M (1982) Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 33:253–258

    PubMed  CAS  Google Scholar 

  46. Haines DE, Dietrich E, Sowa TE (1984) Hypothalamo-cerebellar and cerebello-hypothalamic pathways: a review and hypothesis concerning cerebellar circuits which may influence autonomic centers affecting behavior. Brain Behav Evol 24:198–220

    PubMed  CAS  Google Scholar 

  47. Mugnaini E, Floris A (1994) The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comp Neurol 339:174–180

    PubMed  CAS  Google Scholar 

  48. Goodwin GC, Sin KS (1984) Adaptative filtering prediction and control. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  49. Llinas R (1981) Electrophysiology of the cerebellar networks. In: Bookhart JM, Mountcastle VB, Brooks VB, Geiger SR (eds) Handbook of Physiology: the Nervous System II. American Physiological Society, Bethesda, pp 831–876

    Google Scholar 

  50. Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57:169–185

    PubMed  CAS  Google Scholar 

  51. Kawato M, Gomi H (1992) A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern 68:95–103

    PubMed  CAS  Google Scholar 

  52. Fujita M (2006) Feed-forward associative motor learning by the cerebellum. Cerebellum 5(4):298–299

    Google Scholar 

  53. Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a Smith predictor. J Mot Behav 25:203–216

    PubMed  Google Scholar 

  54. Schweighofer N, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control. Eur J Neurosci 10(1):86–94

    PubMed  CAS  Google Scholar 

  55. Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11:1317–1329

    PubMed  Google Scholar 

  56. Paulin MG (1997) Neural representations of moving systems. In: Schmahmann JD (ed) The cerebellum and cognition. Academic, San Diego, pp 515–533

    Google Scholar 

  57. Houk JC, Kiefer J, Barto A (1993) Distributed motor commands in the limb premotor network. Trends Neurosci 16:27–33

    PubMed  CAS  Google Scholar 

  58. Braitenberg V (1967) Is the cerebellar cortex a biological clock in the millisecond range. Prog Brain Res 25:334–346

    PubMed  CAS  Google Scholar 

  59. Lamarre Y, Mercier LA (1971) Neurophysiological studies of harmaline-induced tremor in the cat. Can J Physiol Pharmacol 49:1049–1058

    PubMed  CAS  Google Scholar 

  60. Ivry RB, Keele SB (1989) Timing functions of the cerebellum. J Cogn Neurosci 1:136–152

    Google Scholar 

  61. Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J (2002) The cerebellum and event timing. Ann N Y Acad Sci 978:302–317

    PubMed  Google Scholar 

  62. Gilman S (1969) Fusimotor fiber responses in the decerebellate cat. Brain Res 14:218–221

    PubMed  CAS  Google Scholar 

  63. Bower JM (1995) The cerebellum as a sensory acquisition controller. Hum Brain Mapping 2:255–266

    Google Scholar 

  64. Cerebellar classics I (2007) Monosynaptic inhibition of the intracerebellar nuclei induced from the cerebellar cortex. Cerebellum 6:102–105

    Google Scholar 

  65. Pellionisz A, Llinas R (1979) Brain modelling by tensor network theory and computer simulation. The cerebellum: distributed processor for predictive coordination. Neuroscience 4:323–348

    PubMed  CAS  Google Scholar 

  66. Paulin M (1989) A Kalman filter theory of the cerebellum. In: Arbib MA, Amari S (eds) Dynamic interactions in neural networks: models and data. Springer, New York

    Google Scholar 

  67. Robinson DA (1989) Integrating with neurons. Annu Rev Neurosci 12:33–45

    PubMed  CAS  Google Scholar 

  68. Massaquoi SG, Slotine JE (1996) The intermediate cerebellum may function as a wave-variable processor. Neurosci Lett 215:60–64

    PubMed  CAS  Google Scholar 

  69. Bastian AJ (2006) Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16:645–649

    PubMed  CAS  Google Scholar 

  70. Morton SM, Bastian AJ (2006) Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 26:9107–9116

    PubMed  CAS  Google Scholar 

  71. Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93:2809–2821

    PubMed  Google Scholar 

  72. Thach WT, Goodkin HP, Keating JG (1992) The cerebellum and the adaptative coordination of movement. Annu Rev Neurosci 15:403–442

    PubMed  CAS  Google Scholar 

  73. Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin

    Google Scholar 

  74. Sakurai M (1987) Synaptic modification of parallel fiber-Purkinje cell transmission in in vitro guinea pig cerebellar slices. J Physiol (Lond) 394:463–480

    CAS  Google Scholar 

  75. Crepel F, Krupa M (1988) Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study. Brain Res 458:397–401

    PubMed  CAS  Google Scholar 

  76. Lev-Ram V, Mehta SB, Kleinfeld D, Tsien RY (2003) Reversing cerebellar long-term depression. Proc Natl Acad Sci U S A 100:15989–15993

    PubMed  CAS  Google Scholar 

  77. Coesmans M, Weber JT, De Zeeuw CI, Hansel C (2004) Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44:691–700

    PubMed  CAS  Google Scholar 

  78. Leiner HC, Leiner AL, Dow RS (1986) Does the cerebellum contribute to mental skills. Behav Neurosci 100:443–454

    PubMed  CAS  Google Scholar 

  79. Schmahmann JD (1997) The cerebellum and cognition. Academic, New York

    Google Scholar 

  80. Dum RP, Strick PL (2003) An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol 89:634–639

    PubMed  Google Scholar 

  81. Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444

    PubMed  CAS  Google Scholar 

  82. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME (1989) Positron emission tomographic studies of the processing of single words. J Cogn Neurosci 1:153–170

    Google Scholar 

  83. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579

    PubMed  Google Scholar 

  84. Svensson P, Minoshima S, Beydoun A, Morrow TJ, Casey KL (1997) Cerebral processing of acute skin and muscle pain in humans. J Neurophysiol 78:450–460

    PubMed  CAS  Google Scholar 

  85. Ploghaus A, Tracey I, Gati JS et al (1999) Dissociating pain from its anticipation in the human brain. Science 284:1979–1081

    PubMed  CAS  Google Scholar 

  86. Christmann C, Koeppe C, Braus DF, Ruf M, Flor H (2007) A simultaneous EEG-fMRI study of painful electric stimulation. Neuroimage 34(4):1428–1437

    PubMed  Google Scholar 

  87. Macefield VG, Gandevia SC, Henderson LA (2007) Discrete changes in cortical activation during experimentally induced referred muscle pain: a single-trial fMRI study. Cereb Cortex 17(9):2050–2059

    PubMed  Google Scholar 

  88. Bouhlal Y, Zouari M, Kefi M, Ben Hamida C, Hentati F, Amouri R (2008) Autosomal recessive ataxia caused by three distinct gene defects in a single consanguineous family. J Neurogenet 22(2):139–148

    PubMed  CAS  Google Scholar 

  89. Dueñas AM, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain 129(Pt 6):1357–1370

    PubMed  Google Scholar 

  90. Orr HT, Chung MY, Banfi S et al (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221–226

    PubMed  CAS  Google Scholar 

  91. Kawaguchi Y, Okamoto T, Tanimaki M et al (1994) CAG expansions in a novel gene for Machado–Joseph disease at chromosome 14q32.1. Nat Genet 8:221–228

    PubMed  CAS  Google Scholar 

  92. Zhuchenko O, Baily J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15:62–69

    PubMed  CAS  Google Scholar 

  93. Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, Pearlman S, Starkman S, Orozco-Diaz G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Korenberg JR, Figueroa C, Sahba S (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14(3):269–276 Nov

    PubMed  CAS  Google Scholar 

  94. Gatti RA, Berkel I, Boder E, Braedt G, Charmley P, Concannon P, Ersoy F, Foroud T, Jaspers NG, Lange K et al (1988) Localization of an ataxia–telangiectasia gene to chromosome 11q22–23. Nature 336(6199):577–580

    PubMed  CAS  Google Scholar 

  95. Moreira MC, Barbot C, Tachi N, Kozuka N, Uchida E, Gibson T, Mendonça P, Costa M, Barros J, Yanagisawa T, Watanabe M, Ikeda Y, Aoki M, Nagata T, Coutinho P, Sequeiros J, Koenig M (2001) The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet 29(2):189–193

    PubMed  CAS  Google Scholar 

  96. Engert JC, Bérubé P, Mercier J, Doré C, Lepage P, Ge B, Bouchard JP, Mathieu J, Melançon SB, Schalling M, Lander ES, Morgan K, Hudson TJ, Richter A (2000) ARSACS, a spastic ataxia common in northeastern Québec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Genet 24(2):120–125

    PubMed  CAS  Google Scholar 

  97. Lee Y, Samaco RC, Gatchel JR, Thaller C, Orr HT, Zoghbi HY (2008) miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci 11(10):1137–1139

    PubMed  CAS  Google Scholar 

  98. Lim J, Crespo-Barreto J, Jafar-Nejad P, Bowman AB, Richman R, Hill DE, Orr HT, Zoghbi HY (2008) Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 452(7188):707–708

    Google Scholar 

  99. Zühlke C, Bürk K (2007) Spinocerebellar ataxia type 17 is caused by mutations in the TATA-box binding protein. Cerebellum 19:1–8

    Google Scholar 

  100. Rubinsztein DC. Functional genomics approaches to neurodegenerative diseases. Mamm Genome 2008 Jul 30

  101. Arning L, Schöls L, Cin H, Souquet M, Epplen JT, Timmann D. Identification and characterisation of a large Senataxin (SETX) gene duplication in ataxia with ocular apraxia type 2 (AOA2). Neurogenetics 2008 Jul 29

  102. Bailly YJR, Castets F (2007) Phocein: a potential actor in vesicular trafficking at Purkinje cell dendritic spines. Cerebellum 6:344–352

    CAS  Google Scholar 

  103. Takiyama Y (2007) Sacsinopathies: Sacsin-related ataxia. Cerebellum 6:353–359

    CAS  Google Scholar 

  104. Chen WL, Lin JW, Huang HJ, Wang SM, Su MT, Lee-Chen GJ, Chen CM, Hsieh-Li HM (2008) SCA8 mRNA expression suggests an antisense regulation of KLHL1 and correlates to SCA8 pathology. Brain Res 1233:176–184

    PubMed  CAS  Google Scholar 

  105. Huen NYM, Wong SLA, Chan E (2007) Transcriptional malfunctioning of heat shock protein gene expression in spinocerebellar ataxias. Cerebellum 6:111–117

    PubMed  CAS  Google Scholar 

  106. Riant F, Mourtada R, Saugier-Veber P, Tournier-Lasserve E (2008) Large CACNA1A deletion in a family with episodic ataxia type 2. Arch Neurol 65(6):817–820 Jun

    PubMed  Google Scholar 

  107. Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, Paulson HL, Yang L, Kotin RM, Davidson BL (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10:816–820

    PubMed  CAS  Google Scholar 

  108. Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10:1511–1518

    PubMed  CAS  Google Scholar 

  109. Steffan JS, Kazantsev A, Spasic-Boskovic O et al (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A 97:6763–6768

    PubMed  CAS  Google Scholar 

  110. Lujan R (2007) Subcellular regulation of metabotropic GABA receptors in the developing cerebellum. Cerebellum 6:123–129

    PubMed  CAS  Google Scholar 

  111. Chou AH, Yeh TH, Ouyang P, Chen YL, Chen SY, Wang HL (2008) Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation. Neurobiol Dis 31(1):89–101

    PubMed  CAS  Google Scholar 

  112. Mavrou A, Tsangaris GT, Roma E, Kolialexi A (2008) The ATM gene and ataxia telangiectasia. Anticancer Res 28(1B):401–405

    PubMed  CAS  Google Scholar 

  113. Lavin MF, Gueven N, Bottle S, Gatti RA (2007) Current and potential therapeutic strategies for the treatment of ataxia–telangiectasia. Br Med Bull 81–82:129–147

    PubMed  Google Scholar 

  114. Behesti H, Marino S. Cerebellar granule cells: Insights into proliferation, differentiation, and role in medulloblastoma pathogenesis. Int J Biochem Cell Biol 2008 Aug 5

  115. Hoshino M (2006) Molecular machinery governing GABAergic neuron specification in the cerebellum. Cerebellum 5:193–198

    PubMed  CAS  Google Scholar 

  116. Iijima K, Abe H, Okazawa M, Moriyoshi K, Nakanishi S (2008) Dual regulation of NR2B and NR2C expression by NMDA receptor activation in mouse cerebellar granule cell cultures. Proc Natl Acad Sci U S A 105(33):12010–12015

    PubMed  CAS  Google Scholar 

  117. Ackermann H, Mathiak K, Riecker A (2007) The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum 6:202–213

    PubMed  Google Scholar 

  118. Lee CE, Danielian LE, Thomasson D, Baker EH. Normal regional fractional anisotropy and apparent diffusion coefficient of the brain measured on a 3 T MR scanner. Neuroradiology 2008 Aug 13

  119. Triulzi F, Parazzini C, Righini A (2006) Magnetic resonance imaging of fetal cerebellar development. Cerebellum 5:199–205

    PubMed  Google Scholar 

  120. Balsters JH, Ramnani N. Symbolic representations of action in the human cerebellum. Neuroimage 2008 Jul 18

  121. Park JY, Gu BM, Kang DH, Shin YW, Choi CH, Lee JM, Kwon JS. Integration of cross-modal emotional information in the human brain: an fMRI study. Cortex 2008 Jun 29

  122. Nave RD, Ginestroni A, Tessa C, Salvatore E, De Grandis D, Plasmati R, Salvi F, De Michele G, Dotti MT, Piacentini S, Mascalchi M. Brain white matter damage in SCA1 and SCA2. An in vivo study using voxel-based morphometry, histogram analysis of mean diffusivity and tract-based spatial statistics. Neuroimage 2008 Jul 11

  123. Habek M, Brinar VV, Rados M, Zadro I, Zarković K (2008) Brain MRI abnormalities in ataxia–telangiectasia. Neurologist 4(3):192–195

    Google Scholar 

  124. Ikenaga T, Yoshida M, Uematsu K (2006) Cerebellar efferent neurons in teleost fish. Cerebellum 5:268–274

    PubMed  CAS  Google Scholar 

  125. Rosiello L (1937) Sull’origine delle fibre muschiose del cerveletto. Riv Neurol 10:437–455

    Google Scholar 

  126. Walberg F (1956) Descending connections to the inferior olive: an experimental study in the cat. J Comp Neurol 104:77–174

    PubMed  CAS  Google Scholar 

  127. Asanuma C, Thach WT, Jones EG (1983) Brainstem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brainstem projections of the dorsal column nuclei. Brain Res Rev 5:299–322

    Google Scholar 

  128. Evrard HC, Craig AD (2008) Retrograde analysis of the cerebellar projections to the posteroventral part of the ventral lateral thalamic nucleus in the macaque monkey. J Comp Neurol 508(2):286–314

    PubMed  Google Scholar 

  129. Brodal P, Bjaalie JG (1997) Salient anatomic features of the cortico-ponto-cerebellar pathway. Prog Brain Res 114:227–249

    PubMed  CAS  Google Scholar 

  130. Onat F, Çavdar F (2003) Cerebellar connections: hypothalamus. Cerebellum 2:263–269

    PubMed  Google Scholar 

  131. Balsters JH, Ramnani N. Symbolic representations of action in the human cerebellum. Neuroimage 2008 Jul 18

  132. Ray A, Zoidl G, Wahle P, Dermietzel R (2006) Pannexin expression in the cerebellum. Cerebellum 5:189–192

    PubMed  CAS  Google Scholar 

  133. Sugihara S (2006) Organization and remodeling of the olivocerebellar climbing fiber projection. Cerebellum 5:15–22

    PubMed  Google Scholar 

  134. Surchev L, Nazwar TA, Weisheit G, Schilling K (2007) Developmental increase of total cell numbers in the murine cerebellum. Cerebellum 6:315–320

    Google Scholar 

  135. Millen KJ, Gleeson JG (2008) Cerebellar development and disease. Curr Opin Neurobiol 18(1):12–19

    PubMed  CAS  Google Scholar 

  136. Welch MG, Ludwig RG, Opler M, Ruggiero DA (2006) Secretin’s role in the cerebellum: a larger biological context and implications for developmental disorders. Cerebellum 5:2–6

    PubMed  CAS  Google Scholar 

  137. Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72:295–339

    PubMed  CAS  Google Scholar 

  138. Fotaki V, Price DJ, Mason JO (2008) Newly identified patterns of Pax2 expression in the developing mouse forebrain. BMC Dev Biol 8:79 Aug 13

    PubMed  Google Scholar 

  139. Eastwood SL, Salih T, Harrison PJ (2005) Differential expression of calcineurin A subunit mRNA isoforms during rat hippocampal and cerebellar development. Eur J Neurosci 22(12):3017–3024

    PubMed  Google Scholar 

  140. Van Der Giessen RS, Koekkoek SK, van Dorp S, De Gruijl JR, Cupido A, Khosrovani S, Dortland B, Wellershaus K, Degen J, Deuchars J, Fuchs EC, Monyer H, Willecke K, De Jeu MT, De Zeeuw CI (2008) Role of olivary electrical coupling in cerebellar motor learning. Neuron 58(4):599–612

    Google Scholar 

  141. Pompeiano O (1958) Responses of electrical stimulation of the intermediate part of the cerebellar anterior lobe in the decerebrate cat. Arch Ital Biol 96:330–360

    Google Scholar 

  142. Llinas R, Bloedel J (1967) Frog cerebellum: absence of long term inhibition upon the Purkinje cell. Science 155:601–603

    PubMed  CAS  Google Scholar 

  143. Crepel F, Dhanjal SS, Garthwaite J (1981) Morphological and electrophysiological characteristics of rat cerebellar slices maintained in vitro. J Physiol 316:127–138

    PubMed  CAS  Google Scholar 

  144. Sasaki K, Strata P (1967) Responses evoked in the cerebellar cortex by stimulating mossy fiber pathways to the cerebellum. Exp Brain Res 3:95–110

    PubMed  CAS  Google Scholar 

  145. De Vito RV, Brusa A, Arduini A (1965) Cerebellar and vestibular influences on Deitersian units. J Neurophysiol 19:241–253

    Google Scholar 

  146. Marshall SP, Van Der Giessen RS, De Zeeuw CI, Lang EJ (2007) Altered olivocerebellar activity patterns in the connexin36 knockout mouse. Cerebellum 6:287–299

    CAS  Google Scholar 

  147. Chaillan FA, Truchet B, Roman FS (2008) Extracellular recordings of rodents in vivo: their contribution to integrative neuroscience. J Integr Neurosci 7(2):287–313

    PubMed  CAS  Google Scholar 

  148. Bengtsson F, Hesslow G (2006) Cerebellar control of the inferior olive. Cerebellum 5:7–14

    PubMed  CAS  Google Scholar 

  149. Fahey MC, Cremer PD, Aw ST, Millist L, Todd MJ, White OB, Halmagyi M, Corben LA, Collins V, Churchyard AJ, Tan K, Kowal L, Delatycki MB (2008) Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia. Brain 131(Pt 4):1035–1045

    PubMed  Google Scholar 

  150. Teo JT, Schneider SA, Cheeran BJ, Fernandez-del-Olmo M, Giunti P, Rothwell JC, Bhatia KP (2008) Prolonged cortical silent period but normal sensorimotor plasticity in spinocerebellar ataxia 6. Mov Disord 23(3):378–385

    PubMed  Google Scholar 

  151. Oliveri M, Torriero S, Koch G, Salerno S, Petrosini L, Caltagirone C (2007) The role of transcranial magnetic stimulation in the study of cerebellar cognitive function. Cerebellum 6:95–101

    PubMed  Google Scholar 

  152. Kurokawa-Kuroda T, Ogata K, Suga R, Goto Y, Taniwaki T, Kira J, Tobimatsu S (2007) Altered soleus responses to magnetic stimulation in pure cerebellar ataxia. Clin Neurophysiol 118(6):1198–1203

    PubMed  Google Scholar 

  153. Schelhaas HJ, van de Warrenburg BP, Bos MM, Houtman CJ, Scheffer H, Gabreëls-Festen A, Kremer B, Zwarts MJ (2006) Neurophysiologic studies in early-onset cerebellar ataxia. J Clin Neurophysiol 23(4):381–387

    PubMed  Google Scholar 

  154. Ioffe ME, Ustinova KI, Chernikova LA, Kulikov MA (2006) Supervised learning of postural tasks in patients with poststroke hemiparesis, Parkinson’s disease or cerebellar ataxia. Exp Brain Res 168(3):384–394

    PubMed  CAS  Google Scholar 

  155. Gybina AA, Prohaska JR. Fructose 2,6 bisphosphate is lower in copper deficient rat cerebellum despite higher content of phosphorylated AMP-activated protein kinase. Exp Biol Med (Maywood) 2008 Aug 14

  156. Mulholland PJ (2006) Susceptibility of the cerebellum to thiamine deficiency. Cerebellum 5(1):55–63

    PubMed  CAS  Google Scholar 

  157. Sun Y, Godfrey DA, Godfrey TG, Rubin AM (2007) Changes of amino acid concentrations in the rat vestibular nuclei after inferior cerebellar peduncle transection. J Neurosci Res 85(3):558–574

    PubMed  CAS  Google Scholar 

  158. Arakawa M, Ito Y (2007) N-acetylcysteine and neurodegenerative diseases: basic and clinical pharmacology.. Cerebellum 6:308–314

    CAS  Google Scholar 

  159. Hevers W, Hadley SH, Lüddens H, Amin J (2008) Ketamine, but not phencyclidine, selectively modulates cerebellar GABA(A) receptors containing alpha6 and delta subunits. J Neurosci 28(20):5383–5393

    PubMed  CAS  Google Scholar 

  160. Safo PK, Cravatt BF, Regehr WG (2006) Retrograde endocannabinoid signaling in the cerebellar cortex. Cerebellum 5(2):134–145

    PubMed  CAS  Google Scholar 

  161. Southam E, Morris R, Garthwaite J (1992) Sources and targets of nitric oxide in rat cerebellum. Neurosci Lett 137(2):241–244

    PubMed  CAS  Google Scholar 

  162. Severini C, Zona C (2006) Tachykinins and excitotoxicity in cerebellar granule cells. Cerebellum 5:232–237

    PubMed  CAS  Google Scholar 

  163. Funari VA, Crandall JE, Tolan DR (2007) Fructose metabolism in the cerebellum. Cerebellum 6:130–140

    PubMed  CAS  Google Scholar 

  164. Burbaeva GSh, Boksha IS, Tereshkina EB, Savushkina OK, Starodubtseva LI, Turishcheva MS, Mukaetova-Ladinska E (2007) Systemic neurochemical alterations in schizophrenic brain: glutamate metabolism in focus. Neurochem Res 32(9):1434–1444

    PubMed  CAS  Google Scholar 

  165. Wall MJ (2005) A role for zinc in cerebellar synaptic transmission. Cerebellum 4:224–229

    PubMed  CAS  Google Scholar 

  166. Pedroarena CM, Kamphausen S (2008) Glycinergic synaptic currents in the deep cerebellar nuclei. Neuropharmacology 54(5):784–795

    PubMed  CAS  Google Scholar 

  167. Marchenko SM, Thomas RC (2006) Nuclear Ca2+ signalling in cerebellar Purkinje neurons. Cerebellum 5:36–42

    PubMed  CAS  Google Scholar 

  168. Manent JB, Represa A (2007) Neurotransmitters and brain maturation: early paracrine actions of GABA and glutamate modulate neuronal migration. Neuroscientist 13(3):268–279

    PubMed  CAS  Google Scholar 

  169. Tabata T, Kano M (2006) GABAb receptor-mediated modulation of glutamate signaling in cerebellar Purkinje cells. Cerebellum 5:127–133

    PubMed  CAS  Google Scholar 

  170. Deitmer JW, Brockhaus J, Casel D (2006) Modulation of synaptic activity in Purkinje neurons by ATP. Cerebellum 5:49–54

    PubMed  CAS  Google Scholar 

  171. Tsutsui K (2006) Biosynthesis and organizing action of neurosteroids in the developing Purkinje cell. Cerebellum 5:89–96

    PubMed  CAS  Google Scholar 

  172. Wills S, Cabanlit M, Bennett J, Ashwood P, Amaral DG, Van de Water J. Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behav Immun 2008 Jul 30

  173. Gruol DL, Nelson TE (2005) Purkinje neuron physiology is altered by the inflammatory factor interleukin-6. Cerebellum 4(3):198–205

    PubMed  CAS  Google Scholar 

  174. Johnson V, Friedman N, Haller NA, Hagel C. Immune mediated neurologic dysfunction as a paraneoplastic syndrome in renal cell carcinoma. J Neurooncol 2008 Aug 24

  175. Andoh T, Kishi H, Motoki K, Nakanishi K, Kuraishi Y, Muraguchi A (2008) Protective effect of IL-18 on kainate- and IL-1 beta-induced cerebellar ataxia in mice. J Immunol 180(4):2322–2328

    PubMed  CAS  Google Scholar 

  176. Blanchin S, Coffin C, Viader F, Ruf J, Carayon P, Potier F, Portier E, Comby E, Allouche S, Ollivier Y, Reznik Y, Ballet JJ (2007) Anti-thyroperoxidase antibodies from patients with Hashimoto’s encephalopathy bind to cerebellar astrocytes. J Neuroimmunol 192(1–2):13–20

    PubMed  CAS  Google Scholar 

  177. Pasalar S, Roitman AV, Durfee WK, Ebner TJ (2006) Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat Neurosci 9(11):1404–1411 Nov

    PubMed  CAS  Google Scholar 

  178. Simons MJ, Pellionisz AJ (2006) Genomics, morphogenesis and biophysics: triangulation of Purkinje cell development. Cerebellum 5(1):27–35

    PubMed  CAS  Google Scholar 

  179. Glasauer S (2003) Cerebellar contribution to saccades and gaze holding: a modeling approach. Ann N Y Acad Sci 1004:206–219

    PubMed  Google Scholar 

  180. Ito M (2002) Controller–regulator model of the central nervous system. J Integr Neurosci 1(2):129–143

    PubMed  Google Scholar 

  181. Dean P, Porrill J (2008) Oculomotor anatomy and the motor-error problem: the role of the paramedian tract nuclei. Prog Brain Res 171:177–186

    PubMed  Google Scholar 

  182. Grossberg S, Paine RW (2000) A neural model of cortico-cerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements. Neural Netw 13(8–9):999–1046

    PubMed  CAS  Google Scholar 

  183. Spoelstra J, Schweighofer N, Arbib MA (2000) Cerebellar learning of accurate predictive control for fast-reaching movements. Biol Cybern 82(4):321–333

    PubMed  CAS  Google Scholar 

  184. Macauley SL, Sidman RL, Schuchman EH, Taksir T, Stewart GR. Neuropathology of the acid sphingomyelinase knockout mouse model of Niemann-Pick A disease including structure–function studies associated with cerebellar Purkinje cell degeneration. Exp Neurol 2008 Aug 16

  185. Agashiwala RM, Louis ED, Hof PR, Perl DP. A novel approach to non-biased systematic random sampling: a stereologic estimate of Purkinje cells in the human cerebellum. Brain Res 2008 Aug 12

  186. Michael S, Petrocine SV, Qian J, Lamarche JB, Knutson MD, Garrick MD, Koeppen AH (2006) Iron and iron-responsive proteins in the cardiomyopathy of Friedreich’s ataxia. Cerebellum 5(4):257–267

    PubMed  CAS  Google Scholar 

  187. Axelrad JE, Louis ED, Honig LS, Flores I, Ross GW, Pahwa R, Lyons KE, Faust PL, Vonsattel JP (2008) Reduced Purkinje cell number in essential tremor: a postmortem study. Arch Neurol 65(1):101–107

    PubMed  Google Scholar 

  188. Yokoyama T, Hasegawa K, Horiuchi E, Yagishita S (2007) Multiple system atrophy (MSA) with massive macrophage infiltration in the ponto-cerebellar afferent system. Neuropathology 27(4):375–377

    PubMed  Google Scholar 

  189. Beschorner R, Schittenhelm J, Bueltmann E, Ritz R, Meyermann R, Mittelbronn M. Mature cerebellar teratoma in adulthood. Neuropathology 2008 Jun 30

  190. Barth PG, Aronica E, de Vries L, Nikkels PG, Scheper W, Hoozemans JJ, Poll-The BT, Troost D (2007) Pontocerebellar hypoplasia type 2: a neuropathological update. Acta Neuropathol 114(4):373–386

    PubMed  Google Scholar 

  191. Schutter DJLG, Kammers MPM, Enter D, Van Honk J (2006) A case of illusory own-body perceptions after transcranial magnetic stimulation of the cerebellum. Cerebellum 5(3):238–240

    PubMed  Google Scholar 

  192. Mills JA, Gonzalez RG, Jaffe R (2008) Case records of the Massachusetts General Hospital. Case 25-2008. A 43-year-old man with fatigue and lesions in the pituitary and cerebellum. N Engl J Med 359(7):736–747 Aug 14

    PubMed  CAS  Google Scholar 

  193. Montero R, Pineda M, Aracil A, Vilaseca M-A, Briones P, Sánchez-Alcázar J-A, Navas P, Artuch R (2007) Clinical, biochemical and molecular aspects of cerebellar ataxia and Coenzyme Q10 deficiency. Cerebellum 6:118–122

    PubMed  CAS  Google Scholar 

  194. Assadi M, Leone P, Veloski JJ, Schwartzman RJ, Janson CG, Campellone JV (2008) Validating an Ataxia Functional Composite Scale in spinocerebellar ataxia. J Neurol Sci 268(1–2):136–139

    PubMed  Google Scholar 

  195. Winston K, Gilles FH, Leviton A, Fulchiero A (1977) Cerebellar gliomas in children: clinical considerations and a proposed classification. J Natl Cancer Inst 58:833–838

    PubMed  CAS  Google Scholar 

  196. Sposto R, Ertel IJ, Jenkin RD et al (1989) The effectiveness of chemotherapy for treatment of high grade astrocytoma in children: results of a randomized trial. J Neurooncol 7:165–177

    PubMed  CAS  Google Scholar 

  197. Frings M, Maschke M, Timmann D (2007) Cerebellum and cognition—viewed from philosophy of mind. Cerebellum 6:328–334

    Google Scholar 

  198. Cantelmi D, Schweizer TA, Cusimano MD (2008) Role of the cerebellum in the neurocognitive sequelae of treatment of tumours of the posterior fossa: an update. Lancet Oncol 9(6):569–576

    PubMed  Google Scholar 

  199. Hoppenbrouwers SS, Schutter DJ, Fitzgerald PB, Chen R, Daskalakis ZJ. The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: a review. Brain Res Rev 2008 Jul 25

  200. Thach WT (2007) On the mechanism of cerebellar contributions to cognition. Cerebellum 6(3):163–167

    PubMed  CAS  Google Scholar 

  201. Haarmeier T, Their P (2007) The attentive cerebellum—myth or reality. Cerebellum 6(3):177–183

    PubMed  Google Scholar 

  202. Garrard P, Martin NH, Giunti P, Cipolotti L (2008) Cognitive and social cognitive functioning in spinocerebellar ataxia: a preliminary characterization. J Neurol 255(3):398–405

    PubMed  CAS  Google Scholar 

  203. Ben-Yehudah G, Guediche S, Fiez JA (2007) Cerebellar contributions to verbal working memory: beyond cognitive theory. Cerebellum 6(3):193–201

    PubMed  Google Scholar 

  204. Suenaga M, Kawai Y, Watanabe H, Atsuta N, Ito M, Tanaka F, Katsuno M, Fukatsu H, Naganawa S, Sobue G (2008) Cognitive impairment in spinocerebellar ataxia type 6. J Neurol Neurosurg Psychiatry 79(5):496–499

    PubMed  CAS  Google Scholar 

  205. Steinlin M (2007) The cerebellum in cognitive processes: supporting studies in children. Cerebellum 6(3):237–241

    PubMed  Google Scholar 

  206. Schweizer TA, Levine B, Rewilak D, O'Connor C, Turner G, Alexander MP, Cusimano M, Manly T, Robertson IH, Stuss DT (2008) Rehabilitation of executive functioning after focal damage to the cerebellum. Neurorehabil Neural Repair 22(1):72–77

    PubMed  Google Scholar 

  207. Schmahmann JD, Weilburg JB, Sherman JC (2007) The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum 6(3):254–267

    PubMed  Google Scholar 

  208. Lie CH, Specht K, Marshall JC, Fink GR (2006) Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. Neuroimage 30(3):1038–1049

    PubMed  Google Scholar 

  209. Burk K (2007) Cognition in hereditary ataxia. Cerebellum 6(3):280–286

    PubMed  Google Scholar 

  210. Manto MU (2006) On the cerebello-cerebral interactions. Cerebellum 5(4):286–288

    PubMed  Google Scholar 

  211. Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M (2008) Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain 131(Pt 5):1332–1343 May

    PubMed  CAS  Google Scholar 

  212. Jahn K, Deutschländer A, Stephan T, Kalla R, Hüfner K, Wagner J, Strupp M, Brandt T (2008) Motor control mechanism by the cerebellum. Supraspinal locomotor control in quadrupeds and humans. Prog Brain Res 171:353–362

    PubMed  Google Scholar 

  213. Hirano T (2006) Motor control mechanism by the cerebellum. Cerebellum 5(4):296–300

    PubMed  Google Scholar 

  214. Tilikete C, Pélisson D (2008) Ocular motor syndromes of the brainstem and cerebellum. Curr Opin Neurol 21(1):22–28

    PubMed  Google Scholar 

  215. Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J (2007) The role of the cerebellum for predictive control of grasping. Cerebellum 6(1):7–17

    PubMed  Google Scholar 

  216. Nagao S, Kitazawa H (2008) Role of the cerebellum in the acquisition and consolidation of motor memory. Brain Nerve 60(7):783–790

    PubMed  Google Scholar 

  217. Morton SM, Bastian AJ (2007) Mechanisms of cerebellar gait ataxia. Cerebellum 6(1):79–86

    PubMed  Google Scholar 

  218. Wu T, Chan P, Hallett M (2008) Modifications of the interactions in the motor networks when a movement becomes automatic. J Physiol 586(Pt 17):4295–4304

    PubMed  CAS  Google Scholar 

  219. Molinari M, Leggio MG, Thaut MH (2007) The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain. Cerebellum 6(1):18–23

    PubMed  Google Scholar 

  220. Lalonde R, Strazielle C (2007) Brain regions and genes affecting postural control. Prog Neurobiol 81(1):45–60

    PubMed  CAS  Google Scholar 

  221. Manto M, Bastian AJ (2007) Cerebellum and the deciphering of motor coding. Cerebellum 6:3–6

    Google Scholar 

  222. Fisher BE, Boyd L, Winstein CJ (2006) Contralateral cerebellar damage impairs imperative planning but not updating of aimed arm movements in humans. Exp Brain Res 174(3):453–466

    PubMed  CAS  Google Scholar 

  223. Pollok B, Butz M, Gross J, Südmeyer M, Timmermann L, Schnitzler A (2006) Coupling between cerebellar hemispheres: behavioural, anatomic, and functional data. Cerebellum 5(3):212–9

    PubMed  Google Scholar 

  224. Robertson LT, Grimm RJ (1975) Responses of primate dentate nucleus to different trajectories of the limb. Exp Brain Res 23:447–462

    PubMed  CAS  Google Scholar 

  225. Manzoni D (2005) The cerebellum may implement the appropriate coupling of sensory inputs and motor responses: evidence from vestibular physiology. Cerebellum 4(3):178–88

    PubMed  CAS  Google Scholar 

  226. Thompson RF (2005) In search of memory traces. Annu Rev Psychol 56:1–23

    PubMed  Google Scholar 

  227. Gerwig M, Kolb FP, Timmann D (2007) The involvement of the human cerebellum in eyeblink conditioning. Cerebellum 6(1):38–57

    PubMed  CAS  Google Scholar 

  228. Campolattaro MM, Freeman JH (2008) Eyeblink conditioning in 12-day-old rats using pontine stimulation as the conditioned stimulus. Proc Natl Acad Sci U S A 105(23):8120–8123

    PubMed  CAS  Google Scholar 

  229. De Zeeuw CI, Yeo CH (2005) Time and tide in cerebellar memory formation. Curr Opin Neurobiol 15:667–674

    PubMed  Google Scholar 

  230. Linden DJ (2003) Neuroscience. From molecules to memory in the cerebellum. Science 301:1682–1685

    PubMed  CAS  Google Scholar 

  231. Miwa H (2007) Rodent models of tremor. Cerebellum 6(1):66–72

    PubMed  CAS  Google Scholar 

  232. Kronenbuerger M, Gerwig M, Brol B, Block F, Timmann D (2007) Eyeblink conditioning is impaired in subjects with essential tremor. Brain 130(Pt 6):1538–1551 Jun

    PubMed  Google Scholar 

  233. Rocon E, Manto M, Pons J, Camut S, Belda JM (2007) Mechanical suppression of essential tremor. Cerebellum 6(1):73–78

    PubMed  Google Scholar 

  234. Sprague JM, Chambers WW (1953) Regulation of posture in intact and decerebrate cat. I. Cerebellum, reticular formation, vestibular nuclei. J Neurophysiol 16:451–463

    PubMed  CAS  Google Scholar 

  235. Ioffe ME, Chernikova LA, Ustinova KI (2007) Role of cerebellum in learning postural tasks. Cerebellum 6(1):87–94

    PubMed  CAS  Google Scholar 

  236. Dichgans J, Mauritz KH (1983) Patterns and mechanisms of postural instability in patients with cerebellar lesions. Adv Neurol 39:633–643

    PubMed  CAS  Google Scholar 

  237. Grillner S (1975) Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 55:247–304

    Article  PubMed  CAS  Google Scholar 

  238. Novak KE, Miller LE, Houk JC (2003) Features of motor performance that drive adaptation in rapid hand movements. Exp Brain Res 148(3):388–400

    PubMed  CAS  Google Scholar 

  239. Glickstein M, Waller J, Baizer JS, Brown B, Timmann D (2005) Cerebellum lesions and finger use. Cerebellum 4(3):189–197

    PubMed  Google Scholar 

  240. Monzée J, Drew T, Smith AM (2004) Effects of muscimol inactivation of the cerebellar nuclei on precision grip. J Neurophysiol 91(3):1240–1249

    PubMed  Google Scholar 

  241. Haines DE, Manto MU, Glickstein M (2007) Clinical symptoms of cerebellar disease and their interpretation. Cerebellum 6(4):360–374

    PubMed  Google Scholar 

  242. Horwitz B, Smith JF (2008) A link between neuroscience and informatics: large-scale modeling of memory processes. Methods 44(4):338–347 Apr

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Manto.

Appendix

Appendix

Referees of The Cerebellum.

We are extremely grateful to our reviewers for their timely and constructive criticisms.

Fabio Acquaviva

Rafael Artuch

Stephan Baader

Amy Bastian

Georgia Bishop

Gregory Cole

E. D'Angelo

Frederic Danion

Irene Daum

Paul Dean

Sandrine de Ribaupierre

Tim Ebner

Alessandro Filla

Albert Fuchs

Teiichi Furuichi

Sid Gilman

Stephane Haik

Christian Hansel

Masaya Hirashima

Jerome Honnorat

Jonathan Hore

Chiming Huang

Marat Ioffe

Yoshihisa Ito

Dieter Jaeger

Slobodan Jaric

Patrice Jissendi Tchofo

Christian Joyal

Georg Juckel

Daniela Karall

Ji Soo Kim

Timo Kirschstein

Arnulf Koeppen

James J. Levitt

Thomas Lorivel

Tadaaki Mano

Peter Mariën

Daniele Marmolino

Antoni Matilla Dueñas

William Michel

Hidehiro Mizusawa

Marco Molinari

Dennis Nowak

John Oberdick

Yasuo Oyama

Jane Pickett

Marimelia Porcionatto

Xiaoxi Qiao

Glenn D. Rosen

Ferdinando Rossi

Elizabeth Sajdel-Sulkowska

Sharleen Sakai

Y. Sawaishi

Dennis JLG Schutter

Richard Smeyne

Maja Steinlin

Naotoshi Tamura

Franco Taroni

Albert Thomas

Caroline Tilikete

Dagmar Timmann

Helge Topka

Yoshikazu Ugawa

Alex Verkhratsky

Yosef Yarom

Christopher Yeo

Kunihiro Yoshida

Raffaella Zannolli

Christine Zühlke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manto, M. The Cerebellum, Cerebellar Disorders, and Cerebellar Research—Two Centuries of Discoveries. Cerebellum 7, 505–516 (2008). https://doi.org/10.1007/s12311-008-0063-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0063-7

Keywords

Navigation