Skip to main content
Log in

Microfabrics of omphacite and garnet in eclogite from the Lanterman Range, northern Victoria Land, Antarctica

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

We examined the microfabrics of omphacite and garnet in foliated eclogite to determine the influence of the layered structure on seismic observations in subduction zone. The analyzed eclogite, from the Lanterman Range, northern Victoria Land, Antarctica, is characterized by layering in which the modal abundances of garnet and omphacite vary. For garnet, the low aspect ratios, similar angular distribution of long axes relative to the foliation in both layers, uniform grain size distribution, near-random crystallographic preferred orientations (CPOs), and misorientation angle distributions are indicative of passive behavior during deformation. In contrast, omphacite shows relatively high aspect ratios, a low angle between the long axes of crystals and the foliation, a wide grain-size distribution, and distinctive CPOs, suggesting dislocation creep as the main deformation mechanism. The results of fabric analyses are consistent with strain localization into omphacite or omphacite-rich layers rather than garnet or garnet- rich layers. The single-crystal seismic anisotropy of garnet is very weak (AVP = 0.2%, AVS = 0.5–0.6%), whereas that of omphacite is much stronger (AVP = 3.7–5.9% and AVS = 2.9–3.8%). Seismic anisotropy of the omphacite-rich layers shows an increase of 329% for AVP and 146% for AVS relative to the garnet-rich layers. Our results demonstrate the importance of the layered structure in strain localization and in the development of the seismic anisotropies of subducting oceanic crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ábalos, B., Fountain, D.M., Gil Ibarguchi, J.I., and Puelles, P., 2011, Eclogite as a seismic marker in subduction channels: seismic velocities, anisotropy, and petrofabric of Cabo Ortegal eclogite tectonites (Spain). Geological Society of American Bulletin, 123, 439–456.

    Article  Google Scholar 

  • Armienti, P., Ghezzo, C., Innocenti, F., Manetti, P., Rocchi, S., and Tonarini, S., 1990, Isotope geochemistry and petrology of granitoid suites from Granite Harbour Intrusives of the Wilson Terrane, North Victoria Land, Antarctica. European Journal of Mineralogy, 2, 103–123.

    Article  Google Scholar 

  • Babuška, V., Kumazawa, M., Ohno, I., and Sumino, Y., 1978, Elastic properties of garnet solid-solution series. Physics of the Earth and Planetary Interiors, 16, 157–176.

    Article  Google Scholar 

  • Bascou, J., Barruol, G., Vauchez, A., Mainprice, D., and Egydio-Silva, M., 2001, EBSD-measured lattice-preferred orientations and seismic properties of eclogites. Tectonophysics, 342, 61–80.

    Article  Google Scholar 

  • Bascou, J., Tommasi, A., and Mainprice, D., 2002, Plastic deformation and development of clinopyroxene lattice preferred orientations in eclogites. Journal of Structural Geology, 24, 1357–1368.

    Article  Google Scholar 

  • Bezacier, L, Reynard, B., Bass, J.D., Wang, J., and Mainprice, D., 2010, Elasticity of glaucophane, seismic velocities and anisotropy of the subducted oceanic crust. Tectonophysics, 494, 201–210.

    Article  Google Scholar 

  • Bhagat, S., Bass, J.D., and Smyth, J., 1992, Single-crystal elastic properties of omphacite-C2/c by Brillouin spectroscopy. Journal of Geophysical Research, 97, 6843–6848.

    Article  Google Scholar 

  • Bomparola, R.M., Chezzo, C., Belousova, E., Griffin, W.L., and O’reilly, S.Y., 2007, Resetting of the U-Pb Zircon System in Cambro-Ordovician Intrusives of the Deep Freeze Range, NorthernVictoria Land, Antarctica. Journal of Petrology, 48, 327–364.

    Article  Google Scholar 

  • Bradshaw, J.D. and Laird, M.G., 1983, The pre-Beacon geology of northern Victoria Land: a review. Proceedings of the 4th SCAR/IUGS Symposium on Antarctic Earth Sciences, Adelaide, Aug. 16–20 p. 98–101.

    Google Scholar 

  • Brenker, F.E., Prior, D.J., and Müller, W.F., 2002, Cation ordering in omphacite and effect on deformation mechanism and lattice preferred orientation (LPO). Journal of Structural Geology, 24, 1991–2005.

    Article  Google Scholar 

  • Buatier, M., van Roermund, H.L.M., Drury, M.R., and Lardeaux, J.M., 1991, Deformation and recrystallization mechanisms in naturally deformed omphacites from the Sesia-Lanzo zone; geophysical consequences. Tectonophysics, 195, 11–27.

    Article  Google Scholar 

  • Bunge, H.J., 1982, Texture Analysis in Materials Science. Butterworth, London, 559 p.

    Google Scholar 

  • Caby, R., 1994, Precambrian coesite from northern Mali: first record and implications for plate tectonics in the trans-Saharan segment of the Pan-African belt. European Journal of Mineralogy, 6, 235–244.

    Article  Google Scholar 

  • Cao, Y., Jung, H., and Song, S., 2013, Petro-fabrics and seismic properties of blueschist and eclogite in the North Qilian suture zone, NW China: implications for the low-velocity upper layer in subducting slab, trench-parallel seismic anisotropy, and eclogite detectability in the subduction zone. Journal of Geophysical Research, 118, 3037–3058.

    Google Scholar 

  • Cao, Y., Jung, H., and Song, S., 2014, Microstructures and petro-fabrics of lawsonite blueschist in the North Qilian suture zone, NW China: implications for seismic anisotropy of subducting oceanic crust. Tectonophysics, 628, 140–157.

    Article  Google Scholar 

  • Cao, Y. and Jung, H., 2016, Seismic properties of subducting oceanic crust: Constraints from natural lawsonite-bearing blueschist and eclogite in Sivrihisar Massif, Turkey. Physics of the Earth and Planetary Interiors, 250, 12–30.

    Article  Google Scholar 

  • Corfu, F. and Hartz, E.H., 2011, U-Pb geochronology in Liverpool Land and Canning Land, East Greenland–the complex record of a polyphase Caledonian orogeny. Canadian Journal of Earth Sciences, 48, 473–494.

    Article  Google Scholar 

  • Crispini, L., Di Vincenzo, G., and Palmeri, R., 2007, Petrology and Ar- Ar dating of shear zones in the Lanterman Range (northern Victoria Land, Antarctica): implications for metamorphic and temporal evolution at terrane boundaries. Mineralogy and Petrology, 89, 217–249.

    Article  Google Scholar 

  • Di Vincenzo, G., Palmeri, R., Talarico, F., Andriessen, P.A.M., and Ricci, C.A., 1997, Petrology and geochronology of eclogites from the Lanterman Range, Antarctica. Journal of Petrology, 38, 1391–1417.

    Article  Google Scholar 

  • Di Vincenzo, G. and Palmeri, R., 2001, An 40Ar\;39Ar investigation of high-pressure metamorphism and the retrogressive history of mafic eclogites from the Lanterman Range (Antarctica): evidence against a simple temperature control on argon transport in amphibole. Contributions to Mineralogy and Petrology, 141, 15–35.

    Article  Google Scholar 

  • Di Vincenzo, G., Ghiribelli, B., Giorgetti, G., and Palmeri, R., 2001, Evidence of a close link between petrology and isotope Records; constraints from SEM, EMP, TEM and in situ 40Ar\;39Ar laser analyses on multiple generations of white micas (Lanterman Range, Antarctica). Earth Planetary Science Letters, 192, 389–405.

    Article  Google Scholar 

  • Di Vincenzo, G., Horton, F., and Palmeri, R., 2016, Protracted (~30 Ma) eclogite-facies metamorphism in northern Victoria Land (Antarctica): implications for the geodynamics of the Ross/Delamerian Orogen. Gondwana Research, 40, 91–106.

    Article  Google Scholar 

  • Fujimoto, Y., Kono, Y., Hirajima, T., Kanagawa, K., Ishikawa, M., and Arima, M., 2010, P-wave velocity and anisotropy of lawsonite and epidote blueschists: constrains on water transportation along subducting oceanic crust. Physics of the Earth and Planetary Interiors, 183, 219–228.

    Article  Google Scholar 

  • Godard, G., 2001, Eclogites and their geodynamic interpretation: a history. Journal of Geodynamics, 32, 165–203.

    Article  Google Scholar 

  • Godard, G. and Palmeri, R., 2013, High-pressure metamorphism in Antarctica from the Proterozoic to the Cenozoic: a review and geodynamic implications. Gondwana Research, 23, 844–864.

    Article  Google Scholar 

  • Godard, G. and van Roermund, H.L.M., 1995, Deformation-induced clinopyroxene fabrics from eclogites. Journal of Structural Geology, 17, 1425–1443.

    Article  Google Scholar 

  • Ghiribelli, B., Frezzotti, M.-L., and Palmeri, R., 2002, Coesite in eclogites of the Lanterman Range (Antarctica): evidence from textural and Raman studies. European Journal of Mineralogy, 14, 355–360.

    Article  Google Scholar 

  • Ha, Y., Jung, H., and Raymond, L.A., 2018, Deformation fabrics of glaucophane schists and implications for seismic anisotropy: the importance of lattice preferred orientation of phengite. International Geology Review. https://doi.org/10.1080/00206814.2018.1449142

    Google Scholar 

  • Handy, M.R., 1994, Flow laws for rocks containing two non-linear viscous phases: a phenomenological approach. Journal of Structural Geology, 16, 287–301.

    Article  Google Scholar 

  • Heinrich, C.A., 1986, Eclogite facies regional metamorphism of hydrous mafic rocks in the Central Alpine Adula Nappe. Journal of Petrology, 27, 123–154.

    Article  Google Scholar 

  • Helmstaedt, H., Anderson, O., and Gavasci, A., 1972, Petrofabric studies of eclogite, spinel-websterite and spinel-lherzolite xenoliths from kimberlite-bearing breccia pipes in Southeastern Utah and Northeastern Arizona. Journal of Geophysical Research, 47, 4350–4365.

    Article  Google Scholar 

  • Holland, T.J.B., 1980, The reaction albite = jadeite + quartz determined experimentally in the range 600–1200 °C. American Mineralogist, 65, 129–134.

    Google Scholar 

  • Ji, S. and Martignole, J., 1994, Ductility of garnet as an indicator of extremely high temperature deformation. Journal of Structural Geology, 16, 985–996.

    Article  Google Scholar 

  • Ji, S., Saruwatari, K., Mainprice, D., Wirth, R., Xu, Z., and Xia, B., 2003, Microstructures, petrofabrics and seismic properties of ultra highpressure eclogites from Sulu region, China: implications for rheology of subducted continental crust and origin of mantle reflections. Tectonophysics, 370, 49–76.

    Article  Google Scholar 

  • Jin, Z.-M., Zhang, J., Green, H.W., and Jin, S., 2001, Eclogite rheology: implications for subducted lithosphere. Geology, 99, 667–670.

    Article  Google Scholar 

  • Katayama, I. and Karato, S.-I., 2006, Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in the subduction zone. Physics of the Earth and Planetary Interiors, 157, 33–45.

    Article  Google Scholar 

  • Katayama, I., Hirauchi, K., Michibayashi, K., and Ando, J., 2009, Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature, 461, 1114–1117.

    Article  Google Scholar 

  • Keppler, R., Ullemeyer, K., Behrmann, J.H., Stipp, M., Kurzawski, R.M., and Lokajícek, T., 2015, Crystallographic preferred orientations of exhumed subduction channel rocks from the Eclogite Zone of the Tauern Window (Eastern Alps, Austria), and implications on rock elastic anisotropies at great depths. Tectonophyscis, 647–648, 89–104.

    Article  Google Scholar 

  • Keppler, R., Stipp, M., Behrmann, J.H., Ullemeyer, K., and Heidelbach, F., 2016, Deformation inside a paleosubduction channel–insights from microstructures and crystallographic preferred orientations of eclogites and metasediments from the Tauern Window, Austria. Journal of Structural Geology, 82, 60–79.

    Article  Google Scholar 

  • Kim, D., Katayama, I., Michibayashi, K., and Tsujimori, T., 2013a, Rheological contrast between glaucophane and lawsonite in naturally deformed blueschist from Diablo range, California. Island Arc, 22, 63–73.

    Article  Google Scholar 

  • Kim, D., Katayama, I., Michibayashi, K., and Tsujimori, T., 2013b, Deformation fabrics of natural blueschists and implications for seismic anisotropy in subducting oceanic crust. Physics of the Earth and Planetary Interiors, 444, 8–21.

    Article  Google Scholar 

  • Kim, D., Katayama, I., Wallis, S., Michibayashi, K., Miyake, A., Seto, Y., and Azuma, S., 2015, Deformation microstructures of glaucophane and lawsonite in experimentally deformed blueschists: implications for intermediate-depth intraplate earthquakes. Journal of Geophysical Research, 120, 1229–1242.

    Google Scholar 

  • Kim, D., Wallis, S., Endo, S., and Ree, J.-H., 2016, Seismic properties of lawsonite eclogites from the southern Motagua fault zone, Guatemala. Tectonophysics, 677–678, 88–98.

    Article  Google Scholar 

  • Krogh, E.J., 1982, Metamorphic evolution deduced from mineral inclusions and compositional zoning in garnets from Norwegian country- rock eclogites. Lithos, 15, 305–321.

    Article  Google Scholar 

  • Kurz, W., Jansen, E., Hundernborn, R., Pleuger, J., Schäfer, W., and Unzog, W., 2004, Microstructures and crystallographic preferred orientations of omphacite in Alpine eclogites: implications for the exhumation of (ultra-) high-pressure units. Journal of Geodynamics, 37, 1–55.

    Article  Google Scholar 

  • Kurz, W., 2005, Constriction during exhumation: evidence from eclogite microstructures. Geology, 33, 37–40.

    Article  Google Scholar 

  • Küster, M. and Stöckhert, B., 1999, High differential stress and sublithostatic pore fluid pressure in the ductile regime–microstructural evidence for short term postseismic creep in the Sesia Zone, Western Alps. Tectonophysics, 303, 263–277.

    Article  Google Scholar 

  • Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.D., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., and Youzhi, G., 1997, Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist, 35, 219–246.

    Google Scholar 

  • Mainprice, D., 1990, A Fortran program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Computers & Geosciences, 16, 385–393.

    Article  Google Scholar 

  • Mainprice, D. and Silver, P.G., 1993, Interpretation of SKS-waves using samples from the subcontinental lithosphere. Physics of the Earth and Planetary Interiors, 78, 257–280.

    Article  Google Scholar 

  • Mainprice, D., Barruol, G., and Ben IsmaÏl, W., 2000, The anisotropy of the Earth’s mantle: from single crystal to polycrystal. In: Karato, S., Forte, A.M., Liebermann, R.C., Masters, G., and Stixrude, L. (eds.), Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. Geophysical Monograph Series, 117, p. 237–264.

    Google Scholar 

  • Mainprice, D., Bascou, J., Cordier, P., and Tommasi, A., 2004, Crystal preferred orientations of garnet: comparison between numerical simulations and electron back-scattered diffraction (EBSD) measurements in naturally deformed eclogites. Journal of Structural Geology, 26, 2089–2102.

    Article  Google Scholar 

  • Mainprice, D., Hielscher, R., and Schaeben, H., 2011, Calculating anisotropic physical properties from texture data using the MTEX open source package. In: Prior, D.J., Rutter, E.H., and Tatham, D.J. (eds.), Deformation Mechanisms, Rheology and Tectonics: Microstructures, Mechanics and Anisotropy. Geological Society, London, Special Publications, 360, p. 175–192.

    Google Scholar 

  • Mezger, J.E., 2010, Rotation of irregular staurolite porphyroblasts in a simple shear dominated shear zone controlled by initial growth orientation and aspect ratio. Journal of Structural Geology, 32, 1147–1157.

    Article  Google Scholar 

  • Michibayashi, K., Abe, N., Okamoto, A., Satsukawa, T., and Michikura, K., 2006, Seismic anisotropy in the uppermost mantle, back-arc region of the northeast Japan arc: petrophysical analyses of Ichinomegata peridotite xenoliths. Geophysical Research Letters, 33, L10312. https://doi.org/10.1029/2006GL025812

    Article  Google Scholar 

  • Morales, L.F.G. and Tommasi, A., 2011, Composition, textures, seismic and thermal anisotropies of xenoliths from a thin and hot lithospheric mantle (Summit Lake, southern Canadian Cordillera). Tectonophysics, 507, 1–15.

    Article  Google Scholar 

  • Morimoto, N., 1988, Nomenclature of pyroxenes. Mineralogical Magazine, 52, 535–550.

    Article  Google Scholar 

  • Nakamura, D., 2009, A new formulation of garnet-clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set. Journal of Metamorphic Geology, 27, 495–508.

    Article  Google Scholar 

  • Palmeri, R., Ghiribelli, B., Ranalli, G., Talarico, F., and Ricci, C.-A., 2007, Ultrahigh-pressure metamorphism and exhumation of garnet-bearing ultramafic rocks from the Lanterman Range (northern Victoria Land, Antarctica). Journal of Metamorphic Geology, 25, 225–243.

    Article  Google Scholar 

  • Palmeri, R., Frezzotti, M.L., Godard, G., and Davies, J., 2009, Pressureinduced incipient amorphization of a-quartz and transition to coesite in an eclogite from Antarctica: a first record and some consequences. Journal of Metamorphic Geology, 27, 685–705.

    Article  Google Scholar 

  • Palmeri, R., Talarico, F.M., and Ricci, C.A., 2011, Ultrahigh-pressure metamorphism at the Lanterman Range (northern Victoria Land, Antarctica). Geological Journal, 46, 126–136.

    Article  Google Scholar 

  • Philippot, P. and Van Roermund, L.M., 1992, Deformation processes in eclogitic rocks: evidence for the rheological delamination of the oceanic crust in deeper levels of subduction zones. Journal of Structural Geology, 14, 1059–1077.

    Article  Google Scholar 

  • Powell, R., 1985, Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet-clinopyroxene geothermometer revisited. Journal of Metamorphic Geology, 3, 231–243.

    Article  Google Scholar 

  • Prior, D.J., Wheeler, J., Peruzzo, L., Spiess, R., and Storey, C., 2002, Some garnet microstructures: an illustration of the potential of orientation maps and misorientation analysis in microstructural studies. Journal of Structural Geology, 24, 999–1001.

    Article  Google Scholar 

  • Ravna, E.K., 2000, The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration. Journal of Metamorphic Geology, 18, 211–219.

    Article  Google Scholar 

  • Ricci, C.A., Talarico, F., Palmeri, R., Di Vincenzo, G., and Pertusati, P.C., 1996, Eclogite at the Antarctic palaeo-Pacific active margin of Gondwana (Lanterman Range, northern Victoria Land, Antarctica). Antarctic Science, 8, 277–280.

    Article  Google Scholar 

  • Ricci, C.A., Talarico, F., and Palmeri, R., 1997, Tectonothermal evolution of the Antarctic Paleo-Pacific active margin of Gondwana; a northern Victoria Land perspective. Proceedings of the VII international symposium on Antarctic earth sciences, Siena, Sep. 10–15, p. 213–218.

    Google Scholar 

  • Rocchi, S., Tonarini, S., Armienti, P., Innocenti, F., and Manetti, P., 1998, Geochemical and isotopic structure of the early Paleozoic active margin of Gondwana in northern Victoria Land, Antarctica. Tectonophysics, 284, 261–281.

    Article  Google Scholar 

  • Skemer, P., Katayama, I., Jiang, Z., and Karato, S.-I., 2005, The misorientation index: development of a new method for calculating the strength of lattice-preferred orientation. Tectonophysics, 411, 157–167.

    Article  Google Scholar 

  • Satsukawa, T., Michibayashi, K., Raye, U., Anthony, E.Y., Pulliam, J., and Stern, R., 2010, Uppermost mantle anisotropy beneath the southern Laurentian margin: evidence from Knippa peridotite xenoliths, Texas. Geophysical Research Letters, 37, L20312. https://doi.org/10.1029/2010GL044538

    Article  Google Scholar 

  • Satsukawa, T., Michibayashi, K., Anthony, E.Y., Stern, R., Gao, S.S., and Liu, K.H., 2011, Seismic anisotropy of the uppermost mantle beneath the Rio Grande rift: evidence from Kilbourne Hole peridotite xenoliths, New Mexico. Earth and Planetary Science Letters, 311, 172–181.

    Article  Google Scholar 

  • Talarico, F., Ghiribelli, B., Smith Siddoway, C., Palmeri, R., and Ricci, C.A., 1998, The northern Victoria Land segment of the Antarctic paleo-Pacific margin of eastern Gondwana: new constraints from the Lanterman and Mountaineer Ranges. Terra Antarctica, 5, 245–252.

    Google Scholar 

  • Trepmann, C.A. and Stöckhert, B., 2002, Cataclastic deformation of garnet: a record of synseismic loading and postseismic creep. Journal of Structural Geology, 24, 1845–1856.

    Article  Google Scholar 

  • Weaver, S.D., Bradshaw, J.D., and Laird, M.G., 1984, Geochemistry of Cambrian volcanics of the Bowers Supergroup and implications for the Early Paleozoic tectonic evolution of northern Victoria Land, Antarctica. Earth and Planetary Science Letters, 68, 128–140.

    Article  Google Scholar 

  • Whitney, D.L. and Evans, B.W., 2010, Abbreviations for names of rockforming minerals. American Mineralogist, 95, 185–187.

    Article  Google Scholar 

  • Whitney, D.L., Teyssier, C., Seaton, N.C.A., and Fornash, K.F., 2014, Petrofabrics of high-pressure rocks exhumed at the slab-mantle interface from the “point of no return” in a subduction zone (Sivrihisar, Turkey). Tectonics, 33, 2315–2341.

    Article  Google Scholar 

  • Worthington, J.R., Hacker, B.R., and Zandt, G., 2013, Distingushing eclogite from peridotite: EBSD-based calculations of seismic velocities. Geophysical Journal International, 193, 489–505.

    Article  Google Scholar 

  • Zhang, J. and Green, H.W., 2007, On the deformation of UHP eclogite: from laboratory to nature. International Geology Review, 49, 487–503.

    Article  Google Scholar 

  • Zhang, J., Green, H.W., and Biozhilov, K.N., 2006, Rheology of omphacite at high temperature and pressure and significance of its lattice preferred orientations. Earth and Planetary Science Letters, 246, 432–443.

    Article  Google Scholar 

  • Zhang, J.F., Wang, Y.F., and Jin, Z.M., 2008, CPO-induced seismic anisotropy in UHP eclogites. Science in China Series D-Earth Sciences, 51, 11–21.

    Article  Google Scholar 

  • Zhang, R., Liou, J.G., and Cong, B.L., 1995, Talc-bearing, magnesitebearing, and Ti-clinohumite-bearing ultrahigh-pressure metamafic and ultramafic complex in the Dabie Mountains, China. Journal of Petrology, 36, 1011–1037.

    Article  Google Scholar 

  • Zhang, R., Liou, J.G., Yang, J.S., and Ye, K., 2003, Ultrahigh-pressure metamorphism in the forbidden zone: the Xugou garnet peridotite, Sulu terrane, eastern China. Journal of Metamorphic Geology, 21, 539–550.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daeyeong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Kim, T., Lee, J. et al. Microfabrics of omphacite and garnet in eclogite from the Lanterman Range, northern Victoria Land, Antarctica. Geosci J 22, 939–953 (2018). https://doi.org/10.1007/s12303-018-0055-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-018-0055-7

Key words

Navigation