Skip to main content
Log in

Climate response over Asia/Arctic to change in orbital parameters for the last interglacial maximum

  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

The climate response over Asia/Arctic to the change in orbital parameters for the last interglacial maximum (LIGM) is investigated using the NCAR CCM3. After implementing LIGM orbital parameters, the insolation decreases in January and increases in July in the northern hemisphere in comparison to present values. The reduced net short-wave radiative heat fluxes in January lead to the surface cooling in low to mid latitudes of Asia, whereas a warming is obtained in northern Asia where the net short-wave radiative heat fluxes change little. The January warming in northern Asia/Arctic in the LIGM, consistent with proxy records, is mainly due to the marked increase in downward long wave heat fluxes associated with the increase in cloud and in part by the increase in the Arctic Oscillation polarity. In July, the increased insolation leads to the surface warming over most Asia, even though a slight cooling is obtained in low latitudes in spite of the increase in insolation, due to the decrease in the short-wave heat fluxes at the surface by the increase in the cloud amount. Precipitation overall increases at South and East Asia in July, due to the stronger southwest and southerly winds. The change in insolation due to the orbital parameters determines the climate change pattern in low- to mid-latitudes over Asia in the LIGM, even though the degree of climate change is much lower than suggested by proxy estimates. The results obtained in this study implies that, under the different climate background such as future global warming, the change in greenhouse effect associated with cloud feedback could play an important role in determining the climate change over Asia/Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aalbersberg, G. and Litt, T., 1998, Multi-proxy climate reconstructions for the Eemian and Early Weichselian. Journal of Quaternary Science, 13, 367–390.

    Article  Google Scholar 

  • Alekseev, M.N. and Golubeva, L.B., 1980, On the stratigraphy and paleogeography of the Late Pleistocene of the Southern Primoriye. Bulleten Komissii po Izucheniyu Chetvertichnogo Perioda, 50, 96–107.

    Google Scholar 

  • Andreev, A., Grosse, G., Schirrmeister, L., Kuzmina, S., Novenko, E., Bobrov, A., Tarasov, P., Ilyashuk, B., Kuznetsova, T., Krbetschek, M., Meyer, H., and Kunitsky, V., 2004, Late Saalian and Eemian palaeoenvironmental history of the Bol’shoy Lyakhovsky Island. Laptev Sea region, Arctic Siberia, Boreas, 33, 319–348.

    Google Scholar 

  • An, Z.S., Kukla, G., Porter, S.C., and Xiao, J.L., 1991, Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of Central China during the last 130,000 years. Quaternary Research, 36, 29–36.

    Article  Google Scholar 

  • Arslanov, K.A., Gei, N.A., Izmailov, Y.A., Lokshin, N.B., Gerasimova, S.A., and Tertychnyi, N.I., 1983, On the climatic conditions of formation and age of the deposits of the Late Pleistocene marine terraces on the shore of the Kerch Peninsula. Vestnik Leningradskogo Universiteta, 12, 69–79.

    Google Scholar 

  • Arkhipov, S.A., Votakh, M.R., and Levina, T.P., 1973, Palynology of Riss-Würm (Kazantsevo) and EarlyMiddle Würm deposits in the middle Ob’ River valley. In: Saks, V.N. (ed.), Pleistotsen Sibiri i smezhnykh oblastei, Nauka, Moscow, p. 143–150.

    Google Scholar 

  • Artyushenko, A.T., 1970, Forest-Steppe and Steppe Vegetation of Ukraine during the Quaternary. Naukova Dumka, Kiev, 174 p.

    Google Scholar 

  • Bloom, A.L., Broecker, W.S., Chappell, M.A., Matthews, R.K., and Mesolella, K.J., 1974, Quaternary sea-level fluctuations on a tectonic coast: New 230Th/234U dates from the Huon Peninsula. New Guinea, Quaternary Research, 4, 185–205.

    Google Scholar 

  • Boer, G.J., 1993, Climate change and the regulation of the surface moisture and energy budgets. Climate Dynamics, 8, 225–239.

    Article  Google Scholar 

  • Bonan, G., 1998, The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Community Climate Model. Journal of Climate, 11, 1307–1326.

    Article  Google Scholar 

  • Boyarskaya, T.D., Sokhina, E.N., and Chernyuk, A.V., 1978, Results of the palynological studies of the Quaternary deposits in the lower Priamurye. In: Grichuk, M.P. and Korotkiy, A.M. (eds.), Palinologicheskie Issledovaniya na Dal’nem Vostoke, Far-East Scientific Center USSR Academy of Sciences, Vladivostok, p. 110–116.

    Google Scholar 

  • CAPE-Last Interglacial Project Members, 2006, Last Interglacial Arctic warmth confirms polar amplification of climate change. Quaternary Research, 25, 1383–1400.

    Google Scholar 

  • Chupina, L.N., 1978, Palynology of the Late Pleistocene deposits of the central and southern Kazakhstan. Izvestiya Akademii Nauk Kazakhskoi SSR, Geological Series, 3, 58–63.

    Google Scholar 

  • Cortijo, E., Duplessy, J.C., Labeyrie, L., Leclaire, H., Duprat, J., and Van Weering, T.C.E., 1994, Eemian cooling in the Norwegian Sea and North Atlantic Ocean preceding continental ice-sheet growth. Nature, 372, 446–449.

    Article  Google Scholar 

  • De Noblet, N., Braconnot, P., Joussaume, S., and Masson, V., 1996, Sensitivity of simulated Asian and African summer monsoons to orbitally induced variations in insolation 126, 115, 6 kBP. Climate Dynamics, 12, 589–603.

    Article  Google Scholar 

  • De Vernal, A., Causse, C., Hillaire-Marcel, C., Mott, R.J., and Occhietti, S., 1986, Palynostratigraphy and Th/U ages of upper Pleistocene interglacial and interstadial deposits on Cape Breton Island, eastern Canada, Geology, 14, 554–557.

    Article  Google Scholar 

  • Devyatova, E.I., 1982, Prirodnaya sreda pozdnego pleistotcena i yeyo vliyanie na razvitie cheloveka v Severodvinskom basseine I v Karelii (Late Pleistocene environments as related to human migrations in the Severnaya Dvina basin and in Karelia). Petrozavodsk, Karelia, 156 p.

    Google Scholar 

  • Devyatova, E.I. and Starova, N.N., 1970, Late Quaternary history of the Onega and Ladoga depressions as based on the palynological and diatom analyses. In: Basalikas, A.B. and Bagdonas, A.I. (eds.), Istoriya Ozer, Mintis, Vilnus, p. 82–100.

    Google Scholar 

  • Dodge, R.E., Fairbanks, R.G., Benninger, L.K., and Maurrasse, F., 1983, Pleistocene sea levels from raised coral reefs of Haiti. Science, 219, 1423–1425.

    Article  Google Scholar 

  • EPICA Community members, 2006, One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444, 195–198.

    Article  Google Scholar 

  • Felis, T., Lohmann, G., Kuhnert, H., Lorenz, S.J., Scholz, D., Pätzold, J., Al-Rousan, S.A., and Al-Moghrabi, S.M., 2004, Increased seasonality in Middle East temperatures during the last interglacial period. Nature, 429, 164–168.

    Article  Google Scholar 

  • Frenzel, B., Pecsi, M., and Velichko, A., 1992, Atlas of Paleoclimates and Paleoenvironments of the Northern Hemisphere: Late Pleistocene-Holocene. Geographical Research Institute, Hungarian Academy of Sciences, Budapest; Gustav Fischer Verlag, Stuttgart, 153 p.

    Google Scholar 

  • Giterman, R.Y., 1963, Stages of development of the Quaternary vegetation in Yakutia and their stratigraphical importance. Trudy Geologicheskogo Instituta AN SSSR, 78, 1–192.

    Google Scholar 

  • Gong, D.Y., Wang, S.W., and Zhu, J.H., 2001, East Asian winter monsoon and Arctic Oscillation. Geophysical Research Letters, 28, 2073–2076.

    Article  Google Scholar 

  • Gong, D.Y. and Ho, C.H., 2004, Intra-seasonal variability of wintertime temperature over East Asia. International Journal of Climatology, 24, 131–144.

    Article  Google Scholar 

  • Gong, D.Y., Kim, S.J., and Ho, C.H., 2007, Arctic Oscillation and ice severity in the Bohai Sea. East Asia, International Journal of Climatology, 27, 1287–1302.

    Article  Google Scholar 

  • Gorlova, R.N., 1967, Smena rastitel’nosti kak komponenta biogeotsenozov v predposlednee mezhlednikov’e. Nauka, Moscow, 70 p.

    Google Scholar 

  • Granoszewski, W., Demske, D., Nita, M., Heumann, G., and Andreev, A.A., 2005, Vegetation and climate variability during the Last Interglacial evidenced in the pollen record from Lake Baikal. Global and Planetary Change, 46, 187–198.

    Article  Google Scholar 

  • Grichuk, V.P., 1969, An experiment in reconstructing some characteristics in climate in the Northern hemosphere during the Atlanticum period of Holocene (in Russian). In: Neustadt, M. J. (ed.), Holocene, Akademia Nauk (Moscow), p. 41–57.

    Google Scholar 

  • Grichuk, V.P., Zelikson, E.M., and Nosov, A.A., 1983, New data on the interglacial deposits near Il’inskoye on the Yakhroma River. Bulleten’ Komissii po Izucheniyu Chetvertichnogo Perioda, 52, 150–156.

    Google Scholar 

  • Grichuk, V.P., 1984, Late Pleistocene vegetation history. In: Velichko, A.A. (ed.), Late Quaternary Environments of the Soviet Union. University of Minnesota Press, Minneapolis, p. 155–178.

    Google Scholar 

  • Groll, N., Widmann, M., and Jones, J.M., 2005, Simulated relationships between regional temperature and large-scale circulation: 125 kyr BP (Emian) and the preindustrial period. Journal of Climate, 18, 4032–4045.

    Article  Google Scholar 

  • Gudina, V.I., Kryukov, V.D., Levchuk, L.K., and Sudkov, L.A., 1983, Upper-Pleistocene sediments in northeastern Taimyr. Bulletin of Commission on Quaternary Researches, 52, 90–97 (in Russian).

    Google Scholar 

  • Gurtovaya, Y.Y., 1987, The climatic changes during the Mikulino-Kazantsevo Interglacial on the Russian Plain and in Siberia. Izvestiya Akademii Nauk SSSR, Geographical Series, 2, 54–62.

    Google Scholar 

  • Gurtovaya, Y.Y. and Faustova, M.A., 1977, On the Mikulino stage of the alluvium formation in the middle part of the Desna River basin (Posudichi section). Izvestlya Akademii Nauk SSSR, Geographical Series, 2, 69–75.

    Google Scholar 

  • Gurtovaya, Y.Y. and Krivonogov, S.K., 1988, Phytological characteristics of the Kazantsevo terrestrial deposits. In: Shatskiy, S.B. (ed.), Mikrofossilii i Stratigrafiya Mezozoya i Kainzoya Sibiri, SO Nauka, Novosibirsk, 69 p.

    Google Scholar 

  • Gurtovaya, Y.Y. and Troitskiy, S.L., 1968, On the palynology of the Sangamon deposits of the western Yamal. In: Saks, V.N. (eds.), Neogenovye i Chetvertichnye Otlozheniya Zapadnoi Sibiri. Nauka, Moscow, p. 131–140.

    Google Scholar 

  • Hall, A., Clement, A., Thompson, D.W.J., Broccoli, A.J., and Jackson, C., 2005, The Importance of Atmospheric Dynamics in the Northern Hemisphere Wintertime Climate Response to Changes in the Earth’s Orbit. Journal of Climate, 18, 1315–1325.

    Article  Google Scholar 

  • Harrison, S.P., Kutzbach, J.E., Prentice, I.C., Behling, P.J., and Sykes, M.T., 1995, The response of northern hemisphere extratropical climate and vegetation to orbitally induced changes in insolation during the Last Interglaciation. Quaternary Research 43, 174–184.

    Article  Google Scholar 

  • Heller, F., Shen, C.D., Beer, J., Liu, X.M., Liu, T.S., Bronger, A., Suter, M., and Bonani, G., 1993, Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications. Earth and Planetary Science Letters, 114, 385–390.

    Article  Google Scholar 

  • Ivanova, N.G., 1973, Age estimation of the alluvial deposits of the Vyatka River and reconstruction of vegetation based on the palynological data. In: Grichuk, V.P. (ed.), Palinologiya Pleistotsena i Pliotsena, Nauka, Moscow, p. 63–69.

    Google Scholar 

  • Jeong, J.H. and Ho, C.H., 2005, Changes in occurrence of cold surges over East Asia in association with Arctic Oscillation. Geophysical Research Letters, 32, L14704, doi: 10.1029/2005GL023024.

    Article  Google Scholar 

  • Jiang, H. and Ding, Z., 2005, Temporal and spatial changes of vegetation cover on the Chinese Loess Plateau through the last glacial cycle: evidence from spore-pollen records. Review of Palaeobotany and Palynology, 133, 23–37.

    Article  Google Scholar 

  • Joussaume, S. and Braconnot, P., 1995, Sensitivity of Paleoclimate Simulation Results to Season Definitions. Journal of Geophysical Research, 102, 19431–956.

    Google Scholar 

  • Keen, D.H., Harmon, R.S., and Andrews, J.T., 1981, U-series and amino acid dates from Jersey. Nature, 289, 162–164.

    Article  Google Scholar 

  • Kaspar, F., Kühl, N., Cubasch, U., and Litt, T., 2005, A model-datacomparison of European temperatures in the Eemian interglacial. Geophysical Research Letters, 32, L11703, doi: 10.1029/2005GL022456.

    Article  Google Scholar 

  • Kiehl, J.T., Hack, J.J., Bonan, B.G., Boville, B.A., Williamson, D.L., and Rasch, P., 1998a, The National Center for Atmospheric Research Community Climate Model: CCM3. Journal of Climate, 11, 1131–1149.

    Article  Google Scholar 

  • Kiehl, J.T., Hack, J.J., and Hurrell, J., 1998b, The energy budget of the NCAR Community Climate Model: CCM3. Journal of Climate, 11, 1151–1178.

    Article  Google Scholar 

  • Korotkiy, A.M., Karaulova, L.P., and Troitskaya, T.S., 1980, Quaternary deposits of Primor’e. Stratigraphy and palaeogeography. Trudy Instituta Geologii i Gerfiziki SO AN SSSR, 429, 233 p.

  • Ku, T.L., Kimmel, M.A., Easton, W.H., and O’Neil, T.J., 1974, Eustatic sea level 120,000 years ago Oahu, Hawaii. Science, 183, 959–962.

    Article  Google Scholar 

  • Kubatzki, C., Montoya, M., Rahmstorf, S., Ganopolski, S., and Claussen, M., 2000, Comparison of the last interglacial climate simulated by a coupled global model of intermediate complexity and an AOGCM. Climate Dynamics, 16, 799–814.

    Article  Google Scholar 

  • Kukla, G.J., Bender, M.L., de Beaulieu, J.L., Bond, G., Broecker, W.S., Cleveringa, P., Gavin, J.E., Herbert, T.D., Imbrie, J., Jouzel, J., Keigwin, L.D., Knudsen, K.L., McManus, J.F., Merkt, J., Muhs, D.R., Müller, H., Poore, R.Z., Porter, S.C., Seret, G., Shackleton, N.J., Turner, C., Tzedakis, P.C., and Winograd, I.J., 2002, Last interglacial climates. Quaternary Research, 58, 2–13.

    Article  Google Scholar 

  • LIGA Members, 1991, The last interglacial in high latitudes of the northern hemisphere: terrestrial and marine evidence. Report of the 1st discussion group, Quaternary International, 10–12, 9–28.

  • Liu, X.M., Rolph, T., Bloemendal, J., Shaw, J., and Liu, T.S., 1995, Quantitative estimates of Palaeoprecipitation at Xifeng. in the Loess Plateau of China, Palaeogeography, Palaeoclimatology, Palaeoecology, 113, 243–248.

    Article  Google Scholar 

  • Lozhkin, A.V. and Anderson, P.M., 1995, The last interglaciation in northeast Siberia. Quaternary Research, 43, 147–158.

    Article  Google Scholar 

  • Lozhkin, A.V., Anderson, P.M., Matrosova, T.V., and Minyuk, P.S., 2007, The pollen record from El’gygytgyn Lake: implications for vegetation and climate histories of northern Chukotka since the late middle Pleistocene. Journal of Paleolimnology, 37, 135–153.

    Article  Google Scholar 

  • Lu, J., Ju, J.-H., Kim, S.-J., Ren, J.-Z., and Zhu, Y.-X., 2008, The arctic oscillation and the autumn/winter snow depth over the Tibetan Plateau. Journal of Geophysical Research, 113, D14117, doi: 10.1029/2007JD009567.

    Article  Google Scholar 

  • Lu, J., Kim, S.-J., Abe-Ouchi, A., Yu, Y., and Ohgaito, R., 2010, Arctic Oscillation during the mid-Holocene and the last glacial maximum from PMIP2 model simulations. Journal of Climate (in press).

  • Malyasova, E.S., 1989, Palynology of Novaya Zemlya. In: Kotlyakov, V.M. (ed.), Moreny — Istochnik Glyatsiologicheskikh Dannykh. Nauka, Moscow, p. 182–200.

    Google Scholar 

  • Mamatsashvili, N.S., 1975, Palynological Characteristics of the Quaternary Terrestrial Deposits of Kolkhida. Metsniereba, Tbilisi, 114 p.

    Google Scholar 

  • Mangerud, J., Sonstegaard, E., Sejrup, H.P., and Haldorsen, S., 1981, Continuous Eemian-Early Weichselian sequence containg pollen and marine fossils at Fjosanger, western Norway. Boreas, 10, 137–208.

    Google Scholar 

  • Metel’tseva, E.P. and Sukachev, V.N., 1961, New data on the Pleistocene flora of the central Russian Plain (interglacial peat deposits from the Vladimir district). Bulleten’ Komissii po Izucheniyu Chetvertichnogo Perioda, 26, 50–60.

    Google Scholar 

  • Miller, G.H., Sejrup, H.P., Mangerud, J., and Andersen, B.G., 1983, Amino acids ratios in Quaternary molluscs and foraminifera from western Norway: Correlation. geochronology and paleo-temperature estimates, Boreas, 12, 107–124.

    Google Scholar 

  • Montoya, M., Crowley, T.J., and von Storch, H., 1998, Temperatures at the last interglacial simulated by a coupled ocean-atmosphere climate model. Paleoceanography, 13, 170–177.

    Article  Google Scholar 

  • Montoya, M., von Storch, H., and Crowley, T.J., 2000, Climate Simulation for 125 kyr BP with a Coupled Ocean-Atmosphere General Circulation Model. Journal of Climate, 13, 1057–1072.

    Article  Google Scholar 

  • Muratova, M.V., 1973, The history of vegetation and climate development of the southeastern Chukotka during the Neogene and Pleistocene. Nauka, Moscow, 135 p.

    Google Scholar 

  • Nikol’skaya, M.V., 1980, Paleobotanical characteristics of the Late Pleistocene and Holocene deposits in Taimyr. In: Saks, V.N., Volkova, V.S., and Khlonova, A.F. (eds.), Paleopalinologiya Sibiri, Nauka, Moscow, p. 97–111.

    Google Scholar 

  • Nikonov, A.A. and Vostrukhina, T.M., 1964, On the stratigraphy of the Quaternary deposits of the north-eastern Kola Peninsula. Doklady Akademii nauk SSSR, 158, 104–107.

    Google Scholar 

  • Otto-Bliesner, B.L., Marshall, S.J., Overpeck, J.T., Miller, G.H., Hu, A., and CAPE Last Interglacial Project members, 2006, Simulating Arctic climate warmth and ice field retreat in the last interglaciation. Science, 311, 1751–1753.

    Article  Google Scholar 

  • Peixoto, J.P. and Oort, A.H., 1992, Physics of Climate. Springer-Verlag, New York, AIP Press, 520 p.

    Google Scholar 

  • Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lopenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M., 1999, Climate and atmospheric history of the past 420,000 years from the Vostok ice core. Antarctica. Nature, 399, 429–436.

    Article  Google Scholar 

  • Pleshivtseva, E.S., 1972, Palynology of the deposits of the Boreal transgression in the northwest of the Arkhangelsk district (Severnaya Dvina lowland). In: Grichuk, V.P. (ed.), Palinologiya Pleistotsena. Institut Geografii AN SSR, Moscow, p. 93–104.

    Google Scholar 

  • Prell, W.L. and Kutzbach, J.E., 1987, Monsoon variability over the past 150,000 years. Journal of Geophysical Research, 92, 8411–8425.

    Article  Google Scholar 

  • Rindzyunskaya, N.M. and Pakhomov, M.M., 1977, On the stratigraphy of the Quaternary deposits of the Severo-Baikal’skie Mountains. Izvestiya Akademii Nauk SSSR, Geological Series, 4, 146–149.

    Google Scholar 

  • Rindzyunskaya, N.M., Reverdatto, M.V., Ivanov, N.M., Nedashkovskaya, N.N., and Zelikson, E.M., 1987, Characteristic features of Quaternary sedimentation in the Sub-Polar Urals, Bulleten’ Komissii po Izucheniyu Chetvertichnogo. Perioda, 56, 111–118.

    Google Scholar 

  • Ruddiman, W.F. and Mckintryre, A., 1976, Northeast Atlantic paleoclimatic changes over the past 600,000 years. In: Cline, R.M. and Hays, J.D. (eds.), Investigation of Late Quaternary Paleoceanography and Paleoclimatology, Geological Society of America Memoirs, 145, p. 111–146.

  • Skiba, L.A., 1975, The vegetation history of Kamchatka in the Late Pleistocene. Trudy Geologicheskogo Instituta AN SSSR 276, 208 p.

    Google Scholar 

  • Stuiver, M., Denton, G.H., Hughes, T.J., and Fastook, J.L., 1981, History of marine ice sheet in West Antarctica during the last glaciations: A working hypothesis. In: Denton, G.D. and Hughes, T.J. (eds), The Last Great Ice Sheets. WileyInterscience, New York, p. 319–436.

    Google Scholar 

  • Suzuki, A., Gagan, M., De Deckker, P., Omura, A., Yukino, I., and Kawahata, H., 2001, Last Interglacial Coral Record of Enhanced Insolation Seasonality and Seawater 18O Enrichment in the Ryukyu Islands, Northwest Pacific. Geophysical Research Letters, 28, 3685–3688.

    Article  Google Scholar 

  • Tarasov, P., Granoszewski, W., Bezrukova, E., Brewer, S., Nita, M., Abzaeva, A., and Oberhäsli, H., 2005, Quantitative reconstruction of the last interglacial vegetation and climate based on the pollen record from Lake Baikal, Russia. Climate Dynamics, 25, 625–637.

    Article  Google Scholar 

  • Thompson, D.W.J. and Wallace, J.M., 1998, The Arctic Oscillation signature in the wintertime geopotential height and temperature elds. Geophysical Research Letters, 25, 1297–1300.

    Article  Google Scholar 

  • Thompson, D.W.J. and Wallace, J.M., 2000, Annular modes in the extratropical circulation part I: Month-to-month variability. Journal of Climate, 13, 1000–1016.

    Article  Google Scholar 

  • Van der Hammen, T., Wijmstra, T.A., and Zagwijn, W.H., 1971, The floral record of the late Cenozoic of Europe. In: Turekian, K.K. (ed.), The Late Cenozoic Glacial Ages. Yale University Press, New Haven, Connecticut, p. 391–424.

    Google Scholar 

  • Velichko, A.A., Kremenetski, C.V., Borisova, O.K., Zelikson, E.M., Nechaev, V.P., and Faure, H., 1998, Estimate of methane emission during the last 125,000 years in Northern Eurasia. Global and Planetary Change, 16–17, 159–180.

    Article  Google Scholar 

  • Velichko, A.A., Borisova, O.K., and Zelikson, E.M., 2007, Proxies of the Last Interglacial climate: reconstruction of northern Eurasia climate based on paleofloristic data. Boreas, 37, doi: 10.1111/j.1502-3885.2007.

  • Volkova, V.S., Gurtovaya, Y.Y., and Levchuk, L.K., 1988, Palynology of the marine deposits of the Kazantsevo horizon in the lower Yenisei basin. In: Shatskiy, S.B. (ed.), Mikrofossilii i stratigrafiya Mezozoyz i Kainozoya Sibiri, SO Nauka, Novosibirsk, p. 31–41.

    Google Scholar 

  • Woilard, G.M., 1978, Grande Pile peat bog: A continuous pollen record for the last 140,000 years. Quaternary Research, 9, 1–21.

    Article  Google Scholar 

  • Wu, B.Y. and Wang, J., 2002, Winter Arctic Oscillation, Siberian High and East Asian winter monsoon. Geophysical Research Letters, 29, 197, doi: 10.1029/2002GL015373.

    Google Scholar 

  • Wu, G., Pan, B., Guan, Q., Liu, Z., and Li, J., 2002, Loess record of climatic changes during MIS5 in the Hexi Corrdor, northwest China. Quaternary international, 97–98, 167–172.

    Article  Google Scholar 

  • Yuan, D., Cheng, H., Lawrence Edwards, R., Dykoski, C.A., Kelly, M.J., Zhang, M., Qing, J., Lin, Y., Wang, Y., Wu, J., Dorale, J.A., An, Z., and Cai, Y., 2004, Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon. Science, 304, 575–578.

    Article  Google Scholar 

  • Zagwijn, W.H., 1996, An analysis of Eemian climate in Western and Central Europe. Quaternary Science Reviews, 15, 451–469.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Joong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SJ., Lü, J.M., Yi, S. et al. Climate response over Asia/Arctic to change in orbital parameters for the last interglacial maximum. Geosci J 14, 173–190 (2010). https://doi.org/10.1007/s12303-010-0017-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-010-0017-1

Key words

Navigation