Skip to main content
Log in

Performance of a real-time PCR assay for the rapid identification of Mycobacterium species

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mycobacteria cause a variety of illnesses that differ in severity and public health implications. The differentiation of Mycobacterium tuberculosis (MTB) from nontuberculous mycobacteria (NTM) is of primary importance for infection control and choice of antimicrobial therapy. The diagnosis of diseases caused by NTM is difficult because NTM species are prevalent in the environment and because they have fastidious properties. In the present study, we evaluated 279 clinical isolates grown in liquid culture provided by The Catholic University of Korea, St. Vincent’s Hospital using real-time PCR based on mycobacterial rpoB gene sequences. The positive rate of real-time PCR assay accurately discriminated 100% (195/195) and 100% (84/84) between MTB and NTM species. Comparison of isolates identified using the MolecuTech REBA Myco-ID® and Real Myco-ID® were completely concordant except for two samples. Two cases that were identified as mixed infection (M. intracellulare-M. massiliense and M. avium-M. massiliense co-infection) by PCRREBA assay were only detected using M. abscessus-specific probes by Real Myco-ID®. Among a total of 84 cases, the most frequently identified NTM species were M. intracellulare (n=38, 45.2%), M. avium (n=18, 23.7%), M. massiliense (n=10, 13.2%), M. fortuitum (n=5, 6%), M. abscessus (n=3, 3.9%), M. gordonae (n=3, 3.9%), M. kansasii (n=2, 2.4%), M. mucogenicum (n=2, 2.4%), and M. chelonae (n= 1, 1.2%). Real Myco-ID® is an efficient tool for the rapid detection of NTM species as well as MTB and sensitive and specific and comparable to conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcaide, F. and Santín, M. 2008. Multidrug-resistant tuberculosis. Enferm. Infect. Microbiol. Clin. 13, 54–60.

    Article  Google Scholar 

  • Aravindhan, V., Sulochana, S., Narayanan, S., Paramasivam, C.N., and Narayanan, P.R. 2007. Identification & differentiation of Mycobacterium avium & M. intracellulare by PCR-RFLP assay using the groES gene. Indian J. Med. Res. 126, 575–579.

    CAS  PubMed  Google Scholar 

  • Bae, E., Im, J.H., Kim, S.W., Yoon, N.S., Sung, H., Kim, M.N., and Shim, T.S. 2008. Evaluation of combination of BACTEC mycobacteria growth indicator tube 960 system and Ogawa media for Mycobacterial culture. Korean J. Lab. Med. 28, 299–306.

    Article  PubMed  Google Scholar 

  • Bannalikar, A.S. and Verma, R. 2006. Detection of Mycobacterium avium & M. tuberculosis from human sputum cultures by PCRRFLP analysis of hsp65 gene & pncA PCR. Indian J. Med. Res. 123, 65–172.

    Google Scholar 

  • Brown-Elliott, B.A., Nash, K.A., and Wallace, R.J. Jr. 2012. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin. Microbiol. Rev. 25, 545–582.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chakravorty, S. and Tyagi, J.S. 2005. Novel multipurpose methodology for detection of Mycobacteria in puilmonary and extrapulmonary specimens by smear microscopy, culture, and PCR. J. Clin. Microbiol. 43, 2697–2702.

  • Chen, R., Gao, X.B., Liu, Z.H., Shen, X.B., Guo, A.Z., Duan, Y.Y., Liu, Z.L., Wu, X.W., and Zhu, D.Z. 2013. Combination of multiplex PCR with denaturing high-performance liquid chromatography for rapid detection of Mycobacterium genus and simultaneous identification of the Mycobacterium tuberculosis complex. Diagn. Microbiol. Infect. Dis. 77, 53–57.

    Google Scholar 

  • Daley, C.L. and Griffith D.E. 2010. Pulmonary non-tuberculous mycobacterial infections. Int. J. Tuberc. Lung Dis. 14, 665–671.

    CAS  PubMed  Google Scholar 

  • Espy, M.J., Uhl, J.R., Sloan, L.M., Buckwalter, S.P., Jones, M.F., Vetter, E.A., Yao, J.D., Wengenack, N.L., Rosenblatt, J.E., Cockerill, F.R. 3rd, et al. 2006. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin. Microbiol. Rev. 19, 165–256.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giampaglia, C.M., Martins, M.C., Chimara, E., Oliveira, R.S., de Oliveira Vieira, G.B., Marsico, A.G., Mello, F.C., de Souza Fonseca, L., Kritski, A., and da Silva Telles, M.A. 2007. Differentiation of Mycobacterium tuberculosis from other mycobacteria with pnitrobenzoic acid using MGIT960. Int. J. Tuberc. Lung Dis. 11, 803–807.

    CAS  PubMed  Google Scholar 

  • Griffith, D.E., Aksamit, T., Brown-Elliott, B.A., Catanzaro, A., Daley, C., Gordin, F., Holland, S.M., Horsburgh, R., Huitt, G., Iademarco, M.F., et al. 2007. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care. Med. 175, 367–416.

    Article  CAS  PubMed  Google Scholar 

  • Ichiyama, S., Iinuma, Y., Yamori, S., Hasegawa, Y., Shimokata, K., and Nakashima, N. 1997. Mycobacterium growth indicator tube testing in conjunction with the AccuProbe or the AMPLICORPCR assay for detecting and identifying mycobacteria from sputum samples. J. Clin. Microbiol. 35, 2022–2025.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Issa, R., Abdul, H., Hashim, S.H., Seradja, V.H., Shaili, N., and Hassan, N.A. 2014. High resolution melting analysis for the differentiation of Mycobacterium species. J. Med. Microbiol. 63, 1284–1287.

    Article  PubMed  Google Scholar 

  • Jarzembowski, J.A. and Young, M.B. 2008. Nontuberculous mycobacterial infections. Arch. Pathol. Lab. Med. 132, 1333–1341.

    PubMed  Google Scholar 

  • Jeon, K., Koh, W.J., Kwon, O.J., Suh, G.Y., Chung, M.P., Kim, H., Lee, N.Y., Park, Y.K., and Bai, G.H. 2005. Recovery rate of NTM from AFB smear-positive sputum specimens at a medical centre in South Korea. Int. J. Tuberc. Lung Dis. 9, 1046–1051.

    CAS  PubMed  Google Scholar 

  • Kim, Y.J., Park, M.Y., Kim, S.Y., Cho, S.A., Hwang, S.H., Kim, H.H., Lee, E.Y., Jeong, J., Kim, K.H., and Chang, C.L. 2008. Evaluation of the performances of AdvanSure TB/NTM real time PCR kit for detection of mycobacteria in respiratory specimens. Korean J. Lab. Med. 28, 34–38.

    Article  CAS  PubMed  Google Scholar 

  • Koh, W.J., Chang, B., Jeong, B.H., Jeon, K., Kim, S.Y., Lee, N.Y., Ki, C.S., and Kwon, O.J. 2013. Increasing recovery of nontuberculous Mycobacteria from respiratory specimens over a 10-year period in a tertiary referral hospital in South Korea. Tuberc. Respir. Dis. 75, 199–204.

    Article  Google Scholar 

  • Koh, W.J., Kwon, O.J., and Lee, K.S. 2005. Diagnosis and treatment of nontuberculous mycobacterial pulmonary diseases: a Korean perspective. J. Korean Med. Sci. 20, 913–925.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee, H.Y., Park, H.J., Cho, S.N., Bai, G.H., and Kim, S.J. 2000. Species identification of mycobacteria by PCR-restriction fragment length polymorphism of the rpoB gene. J. Clin. Microbiol. 38, 2966–2971.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, S.K., Lee, E.J., Kim, S.K., Chang, J., Jeong, S.H., and Kang, Y.A. 2012. Changing epidemiology of nontuberculous mycobacterial lung disease in South Korea. Scand. J. Infect. Dis. 44, 733–738.

    Article  PubMed  Google Scholar 

  • Li, B.S., Wang, X.Y., Ma, F.L., Jiang, B., Song, X.X., and Xu, A.G. 2011. Is high resolution melting analysis (HRMA) accurate for detection of human disease-associated mutations? A meta analysis. PLoS One 6, e28078.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lim, S.Y., Kim, B.J., Lee, M.K., and Kim, K. 2008. Development of a real-time PCR-based method for rapid differential identification of Mycobacterium species. Lett. Appl. Microbiol. 46, 101–106.

    CAS  PubMed  Google Scholar 

  • Maurya, A.K., Nag, V.L., Kant, S., Kushwaha, R.A., Kumar, M., Mishra, V., Rahman, W., and Dhole, T.N. 2012. Evaluation of an immunochromatographic test for discrimination between Mycobacterium tuberculosis complex & non tuberculous mycobacteria in clinical isolates from extra-pulmonary tuberculosis. Indian J. Med. Res. 135, 901–906.

    PubMed Central  PubMed  Google Scholar 

  • Park, J.S. 2009. Respiratory review of 2009: nontuberculous Mycobacterium. Tuberc. Respir. Dis. 67, 395–401.

    Article  Google Scholar 

  • Park, Y.S., Lee, C.H., Lee, S.M., Yang, S.C., Yoo, C.G., Kim, Y.W., Han, S.K., Shim, Y.S., and Yim, J.J. 2010. Rapid increase of nontuberculous mycobacterial lung diseases at a tertiary referral hospital in South Korea. Int. J. Tuberc. Lung Dis. 14, 1069–1071.

    CAS  PubMed  Google Scholar 

  • Pérez-Osorio, A.C., Boyle, D.S., Ingham, Z.K., Ostash, A., Gautom, R.K., Colombel, C., Houze, Y., and Leader, B.T. 2012. Rapid identification of mycobacteria and drug-resistant Mycobacterium tuberculosis by use of a single multiplex PCR and DNA sequencing. J. Clin. Microbiol. 50, 326–336.

    Article  PubMed Central  PubMed  Google Scholar 

  • Simons, S., van Ingen, J., Hsueh, P.R., Van Hung, N., Dekhuijzen, P.N., Boeree, M.J., and van Soolingen, D. 2011. Nontuberculous mycobacteria in respiratory tract infections, eastern Asia. Emerg. Infect. Dis. 17, 343–349.

    Article  Google Scholar 

  • Thanachartwet, V., Desakorn, V., Duangrithi, D., Chunpongthong, P., Phojanamongkolkij, K., Jitruckthai, P., Kasetjaroen, Y., and Pitisuttithum, P. 2014. Comparison of clinical and laboratory findings between those with pulmonary tuberculosis and those with nontuberculous mycobacterial lung disease. Southeast Asian J. Trop. Med. Public Health 45, 85–94.

    PubMed  Google Scholar 

  • van Ingen, J., Boeree, M.J., van Soolingen, D., and Mouton, J.W. 2012. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist. Updat. 15, 149–161.

    Article  PubMed  Google Scholar 

  • Wang, H.Y., Bang, H., Kim, S., Koh, W.J., and Lee, H. 2014. Identification of Mycobacterium species in direct respiratory specimens using reverse blot hybridization assay. Int. J. Tuberc. Lung Dis. 18, 1114–1120.

    Article  PubMed  Google Scholar 

  • World Health Organization. 2013. Global tuberculosis report. http://www.who.int/tb/publications/global_report/en/. World Health Organization (ed.) Appia, Geneva, Switzerland: WHO Press, 2013.

    Google Scholar 

  • Yang, M., Yue, Y.J., Guo, T.T., Han, J.L., Liu J.B., Guo, J., Sun, X.P., Feng, R.L., Wu, Y.Y., Wang, C.F., et al. 2014. Limitation of highresolution melting curve analysis for genotyping simple sequence repeats in sheep. Genet. Mol. Res. 13, 2645–2653.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeyoung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hy., Kim, H., Kim, S. et al. Performance of a real-time PCR assay for the rapid identification of Mycobacterium species. J Microbiol. 53, 38–46 (2015). https://doi.org/10.1007/s12275-015-4495-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-4495-8

Keywords

Navigation