Skip to main content
Log in

Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Microbial fuel cells (MFCs) have been shown to be capable of clean energy production through the oxidation of biodegradable organic waste using various bacterial species as biocatalysts. In this study we found Saccharomyces cerevisiae, previously known electrochemcially inactive or less active species, can be acclimated with an electron mediator thionine for electrogenic biofilm formation in MFC, and electricity production is improved with facilitation of electron transfer. Power generation of MFC was also significantly increased by thionine with both aerated and non-aerated cathode. With electrochemically active biofilm enriched with swine wastewater, MFC power increased more significantly by addition of thionine. The optimum mediator concentration was 500 mM of thionine with S. cerevisae in MFC with the maximum voltage and current generation in the microbial fuel cell were 420 mV and 700 mA/m2, respectively. Cyclic voltametry shows that thionine improves oxidizing and reducing capability in both pure culture and acclimated biofilm as compared to non-mediated cell. The results obtained indicated that thionine has great potential to enhance power generation from unmediated yeast or electrochemically active biofilm in MFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R.M. and Bennetto, H.P. 1993. Microbial fuel cells: electricity production from carbohydrates. Appl. Biochem. Biotechnol. 39, 27–40.

    Article  Google Scholar 

  • Bennetto, H. 1990. Electricity generation by microorganisms. Biotechnology 1, 163–168.

    CAS  Google Scholar 

  • Bennetto, H., Delaney, G., Mason, J., Roller, S., Stirling, J., and Thurston, C. 1985. The sucrose fuel cell: efficient biomass conversion using a microbial catalyst. Biotechnol. Lett. 7, 699–704.

    Article  CAS  Google Scholar 

  • Bennetto, H.P., Stirling, J.L., Tanaka, K., and Vega, C.A. 1983. Anodic reactions in microbial fuel cells. Biotechnol. Bioeng. 25, 559–568.

    Article  PubMed  CAS  Google Scholar 

  • Beveridge, T.J. 2004. Composition, reactivity and regulation of extracellular metal-reducing structures (bacterial nanowires) produced by dissimilatory metal — reducing bacteria. Medium: ED.

    Book  Google Scholar 

  • Choi, Y., Kim, N., Kim, S., and Jung, S. 2003. Dynamic behaviors of redox mediators within the hydrophobic layers as an important factor for effective microbial fuel cell operation. Bull. Korean Chem. Soc. 24, 437–440.

    Article  CAS  Google Scholar 

  • Grzebyk, M. and Pozniak, G. 2005. Microbial fuel cells (MFCs) with interpolymer cation exchange membranes. Sep. Purif. Technol. 41, 321–328.

    Article  CAS  Google Scholar 

  • Gunawardena, A., Fernando, S., and To, F. 2008. Performance of a yeast-mediated biological fuel cell. Int. J. Mol. Sci. 9, 1893–1907.

    Article  PubMed  CAS  Google Scholar 

  • Ieropoulos, I., Greenman, J., Melhuish, C., and Hart, J. 2005. Energy accumulation and improved performance in microbial fuel cells. J. Power Sources 145, 253–256.

    Article  CAS  Google Scholar 

  • Kim, J.R., Cheng, S., Oh, S.E., and Logan, B.E. 2007a. Power generation using different cation, anion and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 41, 1004–1009.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.R., Cheng, S., Oh, S.E., and Logan, B.E. 2007b. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Tech. 41, 1004–1009.

    Article  CAS  Google Scholar 

  • Kim, N., Choi, Y., Jung, S., and Kim, S. 2000. Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol. Bioeng. 70, 109–114.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.R., Min, B., and Logan, B.E. 2005. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol. 68, 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., Choi, Y., Jung, S., and Kim, S. 2002. Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. Bioelectrochem. 57, 173–178.

    Article  CAS  Google Scholar 

  • Liu, H., Cheng, S., and Logan, B.E. 2005. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 39, 5488–5493.

    Article  PubMed  CAS  Google Scholar 

  • Logan, B., Cheng, S., Watson, V., and Estadt, G. 2007. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 41, 3341–3346.

    Article  PubMed  CAS  Google Scholar 

  • Najafpour, G.D., Komeili, M., Tajallipour, M., and Asadi, M. 2010a. Bioconversion of cheese whey to methane in an upflow anaerobic packed bed bioreactor. Chem. Biochem. Engineer. Quarterly 24, 111–117.

    CAS  Google Scholar 

  • Najafpour, G.D., Rahimnejad, M., Mokhtarian, N., Daud, W.R.W., and Ghoreyshi, A.A. 2010b. Bioconversion of whey to electrical energy in a biofuel cell using Saccharomyces cerevisiae. World Appl. Sci. J. 8, 01–05.

    CAS  Google Scholar 

  • Oh, S.E., Kim, J.R., Joo, J., and Logan, B.E. 2009. Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Sci. Technol. 60, 1311–1317.

    Article  PubMed  CAS  Google Scholar 

  • Oh, S.T., Kim, J.R., Premier, G.C., Lee, T.H., Kim, C., and Sloan, W.T. 2010. Sustainable wastewater treatment: How might microbial fuel cells contribute. Biotechnol. Adv. 28, 871–881.

    Article  PubMed  CAS  Google Scholar 

  • Oh, S. and Logan, B. 2005. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res. 39, 4673–4682.

    Article  PubMed  CAS  Google Scholar 

  • Oh, S.E. and Logan, B.E. 2006. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol. 70, 162–169.

    Article  PubMed  CAS  Google Scholar 

  • Oh, S.E., Min, B., and Logan, B.E. 2004. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 38, 4900–4904.

    Article  PubMed  CAS  Google Scholar 

  • Park, A.H., Kim, S.K., Shin, I.H., and Jeong, Y.J. 2000. Electricity production in biofuel cell using modified graphite felt electrode with neutral red. Biotechnol. Lett. 22, 1301–1304.

    Article  CAS  Google Scholar 

  • Park, D.H. and Zeikus, J.G. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogens: physiological function of nutral red in membrane driven fumrate reduction and energy conservation. J. Bacteriol. 181, 2403–2410.

    PubMed  CAS  Google Scholar 

  • Park, D.H. and Zeikus, J.G. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66, 1292–1297.

    Article  PubMed  CAS  Google Scholar 

  • Park, D.H. and Zeikus, J.G. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81, 348–355.

    Article  PubMed  CAS  Google Scholar 

  • Park, D.H. and Zeikus, J.G. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59, 58–61.

    Article  PubMed  CAS  Google Scholar 

  • Rabaey, K., Boon, N., Hofte, M., and Verstraete, W. 2005. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39, 3401–3408.

    Article  PubMed  CAS  Google Scholar 

  • Rabaey, K., Boon, N., Siciliano, S.D., Verhaege, M., and Verstraete, W. 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70, 5373–5382.

    Article  PubMed  CAS  Google Scholar 

  • Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., and Lovley, D.R. 2005. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101.

    Article  PubMed  CAS  Google Scholar 

  • Ringeisen, B.R., Henderson, E., Wu, P.K., Pietron, J., Ray, R., Little, B., Biffinger, J.C., and Jones-Meehan, J.M. 2006. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol. 40, 2629–2634.

    Article  PubMed  CAS  Google Scholar 

  • Schroder, U., Niessen, J., and Scholz, F. 2003. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed. 42, 2880–2883.

    Article  Google Scholar 

  • Thurston, C., Bennetto, H., Delaney, G., Mason, J., Roller, S., and Stirling, J. 1985. Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. Microbiology 131, 1393.

    Article  CAS  Google Scholar 

  • Yoon, S.-M., Choi, C.-H., Kim, M., Hyun, M.-S., Shin, S.-H., Yi, D.-H., and Kim, H.J. 2007. Enrichment of electrochemically active bacteria using a three-electrode electrochemical cell. J. Microbiol. Biotechnol. 17, 110–115.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung Rae Kim or Sang-Eun Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahimnejad, M., Najafpour, G.D., Ghoreyshi, A.A. et al. Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture. J Microbiol. 50, 575–580 (2012). https://doi.org/10.1007/s12275-012-2135-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-2135-0

Keywords

Navigation