Skip to main content
Log in

Enhancement of MoTe2 near-infrared absorption with gold hollow nanorods for photodetection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Infrared (IR) light photodetection based on two dimensional (2D) materials of proper bandgap has attracted increasing attention. However, the weak IR absorption in 2D materials, due to their ultrathin attribute and indirect bandgap in multilayer structures, degrades their performance when used as IR photodetectors. In this work, we utilize the fact that few-layer MoTe2 flake has a near-IR (NIR) bandgap and demonstrate a ~ 60-fold enhancement of NIR response by introducing a gold hollow nanorods on the surface. Such gold hollow nanorods have distinct absorption peak located also at the NIR regime, therefore induces strong resonance, benefitting NIR absorption in MoTe2, resulting in strong near-field enhancement. With the evidence from steady and transient state optical spectra, we confirm that the enhancement of NIR response originates only photon absorption, rather than electron transport at interfaces as observed in other heterostructures, therefore, precluding the requirement of high-quality interfaces for commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mueller, T.; Xia, F. N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics2010, 4: 297–301.

    Article  CAS  Google Scholar 

  2. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol.2014, 9: 780–793.

    CAS  Google Scholar 

  3. Long, M. S.; Liu, E. F.; Wang, P.; Gao, A. Y.; Xia, H.; Luo, W.; Wang, B. G; Zeng, J. W.; Fu, Y. J.; Xu, K. et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett.2016, 16: 2254–2259.

    Article  CAS  Google Scholar 

  4. Zhuge, F. W.; Zheng, Z.; Luo, P.; Lv, L.; Huang, Y.; Li, H. Q.; Zhai, T. Y. Nanostructured materials and architectures for advanced infrared photodetection. Adv. Mater. Technol.2017, 2: 1700005.

    Article  CAS  Google Scholar 

  5. Wang, F. K.; Zhang, Y.; Gao, Y.; Luo, P.; Su, J. W.; Han, W.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. 2D metal chalcogenides for IR photodetection. Small2019, 15: 1901347.

    Article  CAS  Google Scholar 

  6. Yu, W. Z.; Li, S. J.; Zhang, Y. P.; Ma, W. L.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. L. Near-infrared photodetectors based on MoTe2/Graphene heterostructure with high responsivity and flexibility. Small2017, 13: 1700268.

    Article  CAS  Google Scholar 

  7. Wei, X.; Yan, F. G.; Lv, Q. S.; Zhu, W. K.; Hu, C.; Patanè, A.; Wang, K. Y. Enhanced photoresponse in MoTe2 photodetectors with asymmetric graphene contacts. Adv. Opt. Mater.2019, 7: 1900190.

    Article  CAS  Google Scholar 

  8. Zhang, K.; Fang, X.; Wang, Y. L.; Wan, Y.; Song, Q. J.; Zhai, W. H.; Li, Y. P.; Ran, G. Z.; Ye, Y.; Dai, L. Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der Waals heterostructure. ACS Appl. Mater. Interfaces2017, 9: 5392–5398.

    Article  CAS  Google Scholar 

  9. Huang, H.; Wang, J. L.; Hu, W. D.; Liao, L.; Wang, P.; Wang, X. D.; Gong, F.; Chen, Y.; Wu, G. J.; Luo, W. J. et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology2016, 27: 445201.

    Article  CAS  Google Scholar 

  10. Zhou, X.; Hu, X. Z.; Jin, B.; Yu, J.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity. Adv. Sci.2018, 5: 1800478.

    Article  CAS  Google Scholar 

  11. Ding, Y.; Zhou, N.; Gan, L.; Yan, X. X.; Wu, R. Z.; Abidi, I. H.; Waleed, A.; Pan, J.; Ou, X. W.; Zhang, Q. C. et al. Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV–vis–IR photodetectors. Nano Energy2018, 49: 200–208.

    Article  CAS  Google Scholar 

  12. Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science2013, 340: 1311–1314.

    Article  CAS  Google Scholar 

  13. Yoon, W. J.; Jung, K. Y.; Liu, J. W.; Duraisamy, T.; Revur, R.; Teixeira, F. L.; Sengupta, S.; Berger, P. R. Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles. Sol. Energy Mat. Sol. Cells2010, 94: 128–132.

    Article  CAS  Google Scholar 

  14. Chou, C. H.; Chen, F. C. Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale2014, 6: 8444–8458.

    Article  CAS  Google Scholar 

  15. Sobhani, A.; Lauchner, A.; Najmaei, S.; Ayala-Orozco, C.; Wen, F. F.; Lou, J.; Halas, N. J. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl. Phys. Lett.2014, 104: 031112.

    Article  CAS  Google Scholar 

  16. Bang, S.; Duong, N. T.; Lee, J.; Cho, Y. H.; Oh, H. M.; Kim, H.; Yun, S. J.; Park, C.; Kwon, M. K.; Kim, J. Y. et al. Augmented quantum yield of a 2D monolayer photodetector by surface plasmon coupling. Nano Lett.2018, 18: 2316–2323.

    Article  CAS  Google Scholar 

  17. McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B2005, 109: 11279–11285.

    Article  CAS  Google Scholar 

  18. Ruppert, C.; Aslan, O. B.; Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett.2014, 14: 6231–6236.

    Article  CAS  Google Scholar 

  19. Yamamoto, M.; Wang, S. T.; Ni, M. Y.; Lin, Y. F.; Li, S. L.; Aikawa, S.; Jian, W. B.; Ueno, K.; Wakabayashi, K.; Tsukagoshi, K. Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe2. ACS Nano2014, 8: 3895–3903.

    Article  CAS  Google Scholar 

  20. Lezama, I. G.; Arora, A.; Ubaldini, A.; Barreteau, C.; Giannini, E.; Potemski, M.; Morpurgo, A. F. Indirect-to-direct band gap crossover in few-layer MoTe2. Nano Lett.2015, 15, 2336–2342.

    Article  CAS  Google Scholar 

  21. Cai, K.; Zhang, W. Y.; Zhang, J.; Li, H. Q.; Han, H. Y.; Zhai, T. Y. Design of gold hollow nanorods with controllable aspect ratio for multimodal imaging and combined chemo-photothermal therapy in the second near-infrared window. ACS Appl. Mater. Interfaces2018, 10: 36703–36710.

    Article  CAS  Google Scholar 

  22. Lee, S. Y.; Jeong, T. Y.; Jung, S.; Yee, K. J. Refractive index dispersion of hexagonal boron nitride in the visible and near-infrared. Phys. Status Solidi B2018, 256: 1800417.

    Article  CAS  Google Scholar 

  23. Jiang, R. B.; Li, B. X.; Fang, C. H.; Wang, J. F. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater.2014, 26: 5274–5309.

    Article  CAS  Google Scholar 

  24. Li, N.; Zhao, P. X.; Astruc, D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem., Int. Ed.2014, 53: 1756–1789.

    Article  CAS  Google Scholar 

  25. Barnes, W. L. Particle plasmons: Why shape matters. Am. J. Phys.2016, 84: 593–601.

    Article  CAS  Google Scholar 

  26. Liu, Y.; Cheng, R.; Liao, L.; Zhou, H. L.; Bai, J. W.; Liu, G.; Liu, L. X.; Huang, Y.; Duan, X. F. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun.2011, 2: 579.

    Article  CAS  Google Scholar 

  27. Luong, D. H.; Lee, H. S.; Ghimire, G.; Lee, J.; Kim, H.; Yun, S. J.; An, G. H.; Lee, Y. H. Enhanced light-matter interactions in self-assembled plasmonic nanoparticles on 2D semiconductors. Small2018, 14: 1802949.

    Article  CAS  Google Scholar 

  28. Gong, X.; Tong, M. H.; Xia, Y. J.; Cai, W. Z.; Moon, J. S.; Cao, Y.; Yu, G.; Shieh, C. L.; Nilsson, B.; Heeger, A. J. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science2009, 325: 1665–1667.

    Article  CAS  Google Scholar 

  29. Rahmati, B.; Hajzadeh, I.; Taheri, M.; Karimzadeh, R.; Mohajerzadeh, S.; Mohseni, S. Plasmonic improvement photoresponse of vertical-MoS2 nanostructure photodetector by Au nanoparticles. Appl. Surf. Sci.2019, 490: 165–171.

    Article  CAS  Google Scholar 

  30. Zhang, W. J.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater.2013, 25: 3456–3461.

    Article  CAS  Google Scholar 

  31. Miao, J. S.; Hu, W. D.; Jing, Y. L.; Luo, W. J.; Liao, L.; Pan, A. L.; Wu, S. W.; Cheng, J. X.; Chen, X. S.; Lu, W. Surface plasmonenhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small2015, 11: 2392–2398.

    Article  CAS  Google Scholar 

  32. Wang, G. C.; Li, L.; Fan, W. H.; Wang, R. Y.; Zhou, S. S.; Lü, J. T.; Gan, L.; Zhai, T. Y. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance. Adv. Funct. Mater.2018, 28, 1800339.

    Article  CAS  Google Scholar 

  33. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B2005, 109, 13857–13870.

    Article  CAS  Google Scholar 

  34. Schnepf, M. J.; Mayer, M.; Kuttner, C.; Tebbe, M.; Wolf, D.; Dulle, M.; Altantzis, T.; Formanek, P.; Forster, S.; Bals, S. et al. Nanorattles with tailored electric field enhancement. Nanoscale2017, 9: 9376–9385.

    Article  CAS  Google Scholar 

  35. Verellen, N.; Sonnefraud, Y.; Sobhani, H.; Hao, F.; Moshchalkov, V. V.; Van Dorpe, P.; Nordlander, P.; Maier, S. A. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett.2009, 9: 1663–1667.

    Article  CAS  Google Scholar 

  36. Zhang, H. Y.; Cadusch, J.; Kinnear, C.; James, T.; Roberts, A.; Mulvaney, P. Direct assembly of large area nanoparticle arrays. ACS Nano2018, 12: 7529–7537.

    Article  CAS  Google Scholar 

  37. Jia, C. C.; Li, X. X.; Xin, N.; Gong, Y.; Guan, J. X.; Meng, L. A.; Meng, S.; Guo, X. F. Interface-engineered plasmonics in metal/semiconductor heterostructures. Adv. Energy Mater.2016, 6: 1600431.

    Article  CAS  Google Scholar 

  38. Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Mayorov, A. S.; Peres, N. M. R. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett.2012, 12: 1707–1710.

    Article  CAS  Google Scholar 

  39. Jung, Y.; Choi, M. S.; Nipane, A.; Borah, A.; Kim, B.; Zangiabadi, A.; Taniguchi, T.; Watanabe, K.; Yoo, W. J.; Hone, J. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron.2019, 2: 187–194.

    Article  Google Scholar 

  40. Ghimire, M. K.; Ji, H.; Gul, H. Z.; Yi, H.; Jiang, J. B.; Lim, S. C. Defect-affected photocurrent in MoTe2 FETs. ACS Appl. Mater. Interfaces2019, 11: 10068–10073.

    Article  CAS  Google Scholar 

  41. Xu, W. G.; Ling, X.; Xiao, J. Q.; Dresselhaus, M. S.; Kong, J.; Xu, H. X.; Liu, Z. F.; Zhang, J. Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. USA2012, 109: 9281–9286.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Research Grant Council of Hong Kong SAR (No. 1620441), NSFC-RGC Joint Research Scheme (No. N_HKUST607/17), the Innovation and Technology Commission (No. ITC-CNERC14SC01), the Zhongshan Municipal Bureau of Science & Technology (No. ZSST19EG03) and National Natural Science Foundation of China (NSFC) (Nos. 11825203, 51872100, 21825103, 21501060 and 51727809), National Basic Research Program of China (Nos. 2015CB932600 and 2019kfyRCPY059), and Foundation of Shenzhen Science and Technology Innovation Committee (No. JCYJ20180504170444967). Technical assistance from the Materials Characterization and Preparation Facilities of HKUST, and from Analytical and Testing Center in Huazhong University of Science and Technology are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Gan, Tianyou Zhai or Zhengtang Luo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, J., Yu, Y., Cai, K. et al. Enhancement of MoTe2 near-infrared absorption with gold hollow nanorods for photodetection. Nano Res. 13, 1636–1643 (2020). https://doi.org/10.1007/s12274-020-2786-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2786-9

Keywords

Navigation