Skip to main content
Log in

Size-dependent structural and magnetic properties of chemically synthesized Co-Ni-Ga nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Phase transitions and magnetic properties of shape-memory materials can be tailored by tuning the size of the constituent materials, such as nanoparticles. However, owing to the lack of suitable synthetic methods for size-controlled Heusler nanoparticles, there is no report on the size dependence of their properties and functionalities. In this contribution, we present the first chemical synthesis of size-selected Co-Ni-Ga Heusler nanoparticles. We also report the structure and magnetic properties of the biphasic Co-Ni-Ga nanoparticles with sizes in the range of 30–84 nm, prepared by a SBA-15 nanoporous silicatemplated approach. The particle sizes could be readily tuned by controlling the loading and concentration of the precursors. The fractions and crystallite sizes of each phase of the Co-Ni-Ga nanoparticles are closely related to their particle size. Enhanced magnetization and decreased coercivity are observed with increasing particle size. The Curie temperature (T c) of the Co-Ni-Ga nanoparticles also depends on their size. The 84 nm-sized particles exhibit the highest T c (≈ 1,174 K) among all known Heusler compounds. The very high Curie temperatures of the Co-Ni-Ga nanoparticles render them promising candidates for application in high-temperature shape memory alloy-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saxena, A.; Aeppli, G. Phase transitions at the nanoscale in functional materials. MRS Bull. 2009, 34, 804–813.

    Article  Google Scholar 

  2. Waitz, T.; Tsuchiya, K.; Antretter, T.; Fischer, F. D. Phase transformations of nanocrystalline martensitic materials. MRS Bull. 2009, 34, 814–821.

    Article  Google Scholar 

  3. Juan, J. S.; Nó, M. L.; Schuh, C. A. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotechnol. 2009, 4, 415–419.

    Article  Google Scholar 

  4. Zhang, J. X.; Ke, X. X.; Gou, G. Y.; Seidel, J.; Xiang, B.; Yu, P.; Liang, W.-I.; Minor, A. M.; Chu, Y.-H.; van Tendeloo, G. et al. A nanoscale shape memory oxide. Nat. Commun. 2013, 4, 2768.

    Google Scholar 

  5. Liu, Y.; Karaman, I.; Wang, H.; Zhang, X. Two types of martensitic phase transformations in magnetic shape memory alloys by in-situ nanoindentation studies. Adv. Mater. 2014, 26, 3893–3898.

    Article  Google Scholar 

  6. Waitz, T.; Antretter, T.; Fischer, F. D.; Simha, N. K.; Karnthaler, H. P. Size effects on the martensitic phase transformation of NiTi nanograins. J. Mech. Phys. Solids 2007, 55, 419–444.

    Article  Google Scholar 

  7. Glezer, A. M.; Blinova, E. N.; Pozdnyakov, V. A.; Shelyakov, A. V. Martensite transformation in nanoparticles and nanomaterials. J. Nanopart. Res. 2003, 5, 551–560.

    Article  Google Scholar 

  8. Waitz, T.; Kazykhanov, V.; Karnthaler, H. P. Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 2004, 52, 137–147.

    Article  Google Scholar 

  9. Waitz, T.; Spišák, D.; Hafner, J.; Karnthaler, H. P. Sizedependent martensitic transformation path causing atomicscale twinning of nanocrystalline NiTi shape memory alloys. EPL 2005, 71, 98–103.

    Article  Google Scholar 

  10. Waitz, T.; Pranger, W.; Antretter, T.; Fischer, F. D.; Karnthaler, H. P. Competing accommodation mechanisms of the martensite in nanocrystalline NiTi shape memory alloys. Mater. Sci. Eng. A 2008, 481–482, 479–483.

    Article  Google Scholar 

  11. Zhao, X. Q.; Liang, Y.; Hu, Z. Q.; Liu, B. X. Thermodynamic interpretation of the martensitic transformation in ultrafine Fe(N) particles. Jpn. J. Appl. Phys. 1996, 35, 4468–4473.

    Article  Google Scholar 

  12. Wang, Y. D.; Ran, Y.; Nie, Z. H.; Liu, D. M.; Zou, L.; Choo, H.; Li, H.; Liaw, P. K.; Yan, J. Q.; McQueeney, R. J. et al. Structural transition of ferromagnetic Ni2MnGa nanoparticles. J. Appl. Phys. 2007, 101, 063530.

    Article  Google Scholar 

  13. Liu, D. M.; Nie, Z. H.; Wang, Y. D.; Liu, Y. D.; Wang, G.; Ren, Y.; Zuo, L. New sequences of phase transition in Ni-Mn-Ga ferromagnetic shape memory nanoparticles. Metall. Mater. Trans. A 2008, 39, 466–469.

    Article  Google Scholar 

  14. Seki, K.; Kura, H.; Sato, T.; Taniyama, T. Size dependence of martensite transformation temperature in ferromagnetic shape memory alloy FePd. J. Appl. Phys. 2008, 103, 063910.

    Article  Google Scholar 

  15. Simon, P.; Wolf, D.; Wang, C. H.; Levin, A. A.; Lubk, A.; Sturm, S.; Lichte, H.; Fecher, G. H.; Felser, C. Synthesis and three-dimensional magnetic field mapping of Co2FeGa Heusler nanowires at 5 nm resolution. Nano Lett. 2016, 16, 114–120.

    Article  Google Scholar 

  16. Imperor-Clerc, M.; Bazin, D.; Appay, M.-D.; Beaunier, P.; Davidson, A. Crystallization of ß-MnO2 nanowires in the pores of SBA-15 silica: In-situ investigation using synchrotron radiation. Chem. Mater. 2004, 16, 1813–1821.

    Article  Google Scholar 

  17. Aguey-Zinsou, K. F.; Yao, J. H.; Guo, Z. X. Reaction paths between LiNH2 and LiH with effects of nitrides. J. Phys. Chem. B 2007, 111, 12531–12536.

    Article  Google Scholar 

  18. Kockrick, E.; Krawiec, P.; Schnelle, W.; Geiger, D.; Schappacher, F. M.; Pöttgen, R.; Kaskel, S. Space-confined formation of FePt nanoparticles in ordered mesoporous silica SBA-15. Adv. Mater. 2007, 19, 3021–3026.

    Article  Google Scholar 

  19. He, M. Q.; Wong, C. H.; Tse, P. L.; Zheng, Y.; Zhang, H. J.; Lam, F. L. Y.; Sheng, P.; Hu, X. J.; Lortz, R. “Giant” enhancement of the upper critical field and fluctuations above the bulk Tc in superconducting ultrathin lead nanowire arrays. ACS Nano 2013, 7, 4187–4193.

    Article  Google Scholar 

  20. Dogan, E.; Karaman, I.; Chumlyakov, Y. I.; Luo, Z. P. Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater. 2011, 59, 1168–1183.

    Article  Google Scholar 

  21. Dadda, J.; Maier, H. J.; Niklasch, D.; Karaman, I.; Karaca, H. E.; Chumlyakov, Y. I. Pseudoelasticity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature. Metall. Mater. Trans. A 2008, 39, 2026–2039.

    Article  Google Scholar 

  22. Craciunescu, C.; Kishi, Y.; Lograsso, T. A.; Wuttig, M. Martensitic transformation in Co2NiGa ferromagnetic shape memory alloys. Scr. Mater. 2002, 47, 285–288.

    Article  Google Scholar 

  23. Fu, H.; Yu, H. J.; Teng, B. H.; Zhang, X. Y.; Zu, X. T. Magnetic properties and magnetic entropy change of Co50Ni22Ga28 alloy. J. Alloys Compd. 2009, 474, 595–597.

    Article  Google Scholar 

  24. Saito, T.; Koshimaru, Y.; Kuji, T. Structures and magnetic properties of Co–Ni–Ga melt-spun ribbons. J. Appl. Phys. 2008, 103, 07B322.

    Article  Google Scholar 

  25. Wang, C. H.; Levin, A. A.; Nasi, L.; Fabbrici, S.; Qian, J. F.; Barbosa, C. E. V.; Ouardi, S.; Karel, J.; Albertini, F.; Borrmann, H. et al. Chemical synthesis and characterization of ?-Co2NiGa nanoparticles with a very high curie temperature. Chem. Mater. 2015, 27, 6994–7002.

    Article  Google Scholar 

  26. Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036.

    Article  Google Scholar 

  27. Levin, A. A.; Levichkova, M.; Hildebrandt, D.; Klisch, M.; Weiss, A.; Wynands, D.; Elschner, C.; Pfeiffer, M.; Leo, K.; Riede, M. Effect of film thickness, type of buffer layer, and substrate temperature on the morphology of dicyanovinylsubstituted sexithiophene films. Thin Solid Films 2012, 520, 2479–2487.

    Article  Google Scholar 

  28. Programm ANALYZE, Rayflex Version 2.285; Rich. Seifert & Co., 2000.

  29. Langford J. I. Accuracy of crystallite size and strain determined from the integral breadth of powder diffraction lines. In Accuracy in Powder Diffraction; Block, S.; Hubbard, C. R., Eds.; National Bureau of Standards: Washington,1980; pp 255–269.

    Google Scholar 

  30. Rehani, B. R.; Joshi, P. B.; Lad, K. N.; Pratap, A. Crystallite size estimation of elemental and composite silver nano-powders using XRD principles. Indian J. Pure Appl. Phys. 2006, 44, 157–161.

    Google Scholar 

  31. Terlan, B.; Levin, A. A.; Börrnert, F.; Simon, F.; Oschatz, M.; Schmidt, M.; Cardoso-Gil, R.; Lorenz, T.; Baburin, I. A.; Joswig, J. O. et al. Effect of surface properties on the microstructure, thermal, and colloidal stability of VB2 nanoparticles. Chem. Mater. 2015, 27, 5106–5115.

    Article  Google Scholar 

  32. Akselrud, L.; Grin, Y. WinCSD: Software package for crystallographic calculations (version 4). J. Appl. Cryst. 2014, 47, 803–805.

    Article  Google Scholar 

  33. Bérar, J.-F.; Lelann, P. E.s.d.’s and estimated probable error obtained in rietveld refinements with local correlations. J. Appl. Cryst. 1991, 24, 1–5.

    Article  Google Scholar 

  34. Levin, A. A.; Filatov, S. K.; Paufler, P.; Bubnova, R. S.; Krzhizhanovskaya, M. G.; Meyer, D. C. Temperaturedependent evolution of RbBSi2O6 glass into crystalline RBboroleucite according to X-ray diffraction data. Z. Kristallogr. 2013, 228, 259–270.

    Article  Google Scholar 

  35. Young, R. A. Introduction to the Rietveld method. In The Rietveld Method; Oxford University Press: Oxford, 1993; pp 21–24.

    Google Scholar 

  36. Maunders, C.; Etheridge, J.; Wright, N.; Whitfield, H. J. Structure and microstructure of hexagonal Ba3Ti2RuO9 by electron diffraction and microscopy. Acta Cryst. 2005, B61, 154–159.

    Article  Google Scholar 

  37. Newville, M.; Ravel, B.; Haskel, D.; Rehr, J. J.; Stern, E. A.; Yacoby, Y. Analysis of multiple-scattering XAFS data using theoretical standards. Phys. B 1995, 208-209, 154–156.

    Article  Google Scholar 

  38. Newville, M. IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Rad. 2001, 8, 322–324.

    Article  Google Scholar 

  39. Zelenák, V.; Zelenáková, A.; Kovác, J. Insight into surface heterogenity of SBA-15 silica: Oxygen related defects and magnetic properties. Colloids Surf. A: Physicochem. Eng. Aspects 2010, 357, 97–104.

    Article  Google Scholar 

  40. Basit, L.; Wang, C. H.; Jenkins, C. A.; Balke, B.; Ksenofontov, V.; Fecher, G. H.; Felser, C.; Mgnaioli, E.; Kolb, U.; Nepijko, S. A. et al. Heusler compounds as ternary intermetallic nanoparticles: Co2FeGa. J. Phys. D Appl. Phys. 2009, 42, 084018.

    Article  Google Scholar 

  41. Wang, C. H.; Guo, Y. Z.; Casper, F.; Balke, B.; Fecher, G. H.; Fesler, C.; Hwu, Y. Size correlated long and short range order of ternary Co2FeGa Heusler nanoparticles. Appl. Phys. Lett. 2010, 97, 103106.

    Article  Google Scholar 

  42. Wang, C. H.; Basit, L.; Khalayka, Y.; Guo, Y. Z.; Casper, F.; Gasi, T.; Ksenofontov, V.; Balke, B.; Fecher, G. H.; Sö nnichsen, C. et al. Probing the size effect of Co2FeGa-SiO2@C nanocomposite particles prepared by a chemical approach. Chem. Mater. 2010, 22, 6575–6582.

    Article  Google Scholar 

  43. Wang, C. H.; Casper, F.; Guo, Y. Z.; Gasi, T.; Ksenofontov, V.; Balke, B.; Fecher, G. H.; Felser, C.; Hwu, Y. K.; Lee, J. J. Resolving the phase structure of nonstoichiometric Co2FeGa Heusler nanoparticles. J. Appl. Phys. 2012, 112, 124314.

    Article  Google Scholar 

  44. Wang, C. H.; Casper, F.; Gasi, T.; Ksenofontov, V.; Balke, B.; Fecher, G. H.; Felser, C.; Hwu, Y. K.; Lee, J. J. Structural and magnetic properties of Fe2CoGa Heusler nanoparticles. J. Phys. D Appl. Phys. 2012, 45, 295001.

    Article  Google Scholar 

  45. Wang, C. H.; Meyer, J.; Teichert, N.; Auge, A.; Rausch, E.; Balke, B.; Hütten A.; Fecher, G. H.; Felser, C. Heusler nanoparticles for spintronics and ferromagnetic shape memory alloys. J. Vac. Sci. Technol. B 2014, 32, 020802.

    Article  Google Scholar 

  46. Lubt, A.; Wolf, D.; Simon, P.; Wang, C.; Sturm, S.; Felser, C. Nanoscale three-dimensional reconstruction of electric and magnetic stray fields around nanowires. Appl. Phys. Lett. 2014, 105, 173110.

    Article  Google Scholar 

  47. Fichtner, T.; Wang, C. H.; Levin, A. A.; Kreiner, G.; Meijia, C. S.; Fabbrici, S.; Albertini, F.; Felser, C. Effects of annealing on the martensitic transformation of Ni-based ferromagnetic shape memory Heusler alloys and nanoparticles. Metals 2015, 5, 484–503.

    Article  Google Scholar 

  48. Wang, C. H.; Levin, A. A.; Fabbrici, S.; Nasi, L.; Karel, J.; Qian, J. F.; Viol Barbosa, C. E.; Ouardi, S.; Albertini, F.; Schnelle, W. et al. Tunable structural and magnetic properties of chemically synthesized dual-phase Co2NiGa nanoparticles. J. Mater. Chem. C. 2016, 4, 7241–7252.

    Article  Google Scholar 

  49. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.

    Article  Google Scholar 

  50. Sato, M.; Okazaki, T.; Furuya, Y.; Wuttig, M. Magnetostrictive and shape memory properties of Heusler type Co2NiGa alloys. Mater. Trans. 2003, 44, 372–376.

    Article  Google Scholar 

  51. Sato, M.; Okazaki, T.; Furuya, Y.; Kishi, Y.; Wuttig, M. Phase transformation and magnetic property of Heusler type Co2NiGa alloys. Mater. Trans. 2004, 45, 204–207.

    Article  Google Scholar 

  52. Brown, P. J.; Ishida, K.; Kainuma, R.; Kanomata, T.; Neumann, K.-U.; Oikawa, K.; Ouladdiaf, B.; Ziebeck, K. R. A. Crystal structures and phase transitions in ferromagnetic shape memory alloys based on Co-Ni-Al and Co-Ni-Ga. J. Phys. Condens. Matter 2005, 17, 1301–1310.

    Article  Google Scholar 

  53. Dai, X. F.; Wang, H. Y.; Liu, G. D.; Wang, Y. G.; Duan, X. F.; Chen, J. L.; Wu, G. H. Effect of heat treatment on the properties of Co50Ni20Ga30 ferromagnetic shape memory alloy ribbons. J. Phys. D Appl. Phys. 2006, 39, 2886–2889.

    Article  Google Scholar 

  54. Oikawa, K.; Ota, T.; Imano, Y.; Omori, T.; Kainuma, R.; Ishida, K. Phase equilibria and phase transformation of Co-Ni-Ga ferromagnetic shape memory alloy system. J. Phase Equilib. Diff. 2006, 27, 75–82.

    Article  Google Scholar 

  55. Dai, X. F.; Liu, G. D.; Li, Y. X.; Qu, J. P.; Li, J.; Chen, J. L.; Wu, G. H. Structure and magnetic properties of highly ordered Co2NiGa alloys. J. Appl. Phys. 2007, 101, 09N503.

    Google Scholar 

  56. Arróyave, R.; Junkaew, A.; Chivukula, A.; Bajaj, S.; Yao, C.-Y.; Garay, A. Investigation of the structural stability of Co2NiGa shape memory alloys via ab initio methods. Acta Mater. 2010, 58, 5220–5231.

    Article  Google Scholar 

  57. Meyer, D. C.; Levin, A. A.; Leisegang, T.; Gutmann, E.; Paufler, P.; Reibold, M.; Pompe, W. Reversible tuning of a series of intergrowth phases of the Ruddlesden–Popper type SrO(SrTiO3)n in an (001) SrTiO3 single-crystalline plate by an external electric field and its potential use for adaptive X-ray optics. Appl. Phys. A 2006, 84, 31–35.

    Article  Google Scholar 

  58. Meyer, D. C.; Paufler, P. Coherency and lattice spacings of textured permalloy/copper multilayers as revealed by X-ray diffraction. J. Alloys Compd. 2000, 298, 42–46.

    Article  Google Scholar 

  59. Segmüller, A.; Blakeslee, A. E. X-ray diffraction from one-dimensional superlattices in GaAs1–xPx crystals. J. Appl. Cryst. 1973, 6, 19–25.

    Article  Google Scholar 

  60. Michaelsen, C. On the structure and homogeneity of solid solutions: The limits of conventional X-ray diffraction. Philos. Mag. A 1995, 72, 813–828.

    Article  Google Scholar 

  61. Ayyub, P.; Palkar, V. R.; Chattopadhyay, S.; Multani, M. Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B 1995, 51, 6135–6138.

    Article  Google Scholar 

  62. Uchino, K.; Sadanaga, E.; Hirose, T. Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 1989, 72, 1555–1558.

    Article  Google Scholar 

  63. Teranishi, T.; Miyake, M. Size control of palladium nanoparticles and their crystal structures. Chem. Mater. 1998, 10, 594–600.

    Article  Google Scholar 

  64. Takahashi, Y. K.; Koyama, T.; Ohnuma, M.; Ohkubo, T.; Hono, K. Size dependence of ordering in FePt nanoparticles. J. Appl. Phys. 2004, 95, 2690–2696.

    Article  Google Scholar 

  65. Qi, W. H.; Wang, M. P. Size and shape dependent lattice parameters of metallic nanoparticles. J. Nanopart. Res. 2005, 7, 51–57.

    Article  Google Scholar 

  66. Baletto, F.; Ferrando, R. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 2005, 77, 371–423.

    Article  Google Scholar 

  67. Rong, C. B.; Li, D.; Nandwana, V.; Poudyal, N.; Ding, Y.; Wang, Z. L.; Zeng, H.; Liu, J. P. Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles. Adv. Mater. 2006, 18, 2984–2988.

    Article  Google Scholar 

  68. Wu, S. J.; Jiang, Y.; Hu, L. J.; Sun, J. G.; Wan, P. P.; Sun, L. D. Size-dependent crystalline fluctuation and growth mechanism of bismuth nanoparticles under electron beam irradiation. Nanoscale 2016, 8, 12282–12288.

    Article  Google Scholar 

  69. Jun, Y.-W.; Seo, J.-W.; Cheon, J. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc. Chem. Res. 2008, 41, 179–189.

    Article  Google Scholar 

  70. Willard, M. A.; Kurihara, L. K.; Carpenter, E. E.; Calvin, S.; Harris, V. G. Chemically prepared magnetic nanoparticles. Int. Mater. Rev. 2004, 49, 125–170.

    Article  Google Scholar 

  71. He, X. M.; Zhong, W.; Au, C.-T.; Du, Y. W. Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method. Nanoscale Res. Lett. 2013, 8, 446.

    Article  Google Scholar 

  72. Shih, T. C.; Xie, J. Q.; Dong, J. W.; Dong, X. Y.; Srivastava, S.; Adelmann, C.; Makernan, S.; James, R. D.; PalmstrØm, C. J. Epitaxial growth and characterization of single crystal ferromagnetic shape memory Co2NiGa films. Ferroelectrics 2006, 342, 35–42.

    Article  Google Scholar 

  73. Hernando, A.; Navarro, I.; Prados, C.; García, D.; Vá zquez, M.; Alsonso, J. Curie-temperature enhancement of ferromagnetic phases in nanoscale heterogeneous systems. Phys. Rev. B 1996, 53, 8223–8226.

    Article  Google Scholar 

  74. Lopez-Dominguez, V.; Hernà ndez, J. M.; Tejada, J.; Ziolo, R. F. Colossal reduction in curie temperature due to finitesize effects in CoFe2O4 nanoparticles. Chem. Mater. 2013, 25, 6–11.

    Article  Google Scholar 

  75. Taylor, A.; Floyd, R. W. Precision measurements of lattice parameters of non-cubic crystals. Acta Cryst. 1950, 3, 285–289.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial supports by the German Research Foundation (DFG) under the Project of TP 2.3-A in research unit FOR 1464 “ASPIMATT” and the ERC Advanced Grant (291472 Idea Heusler). The authors are also grateful to Prof. A. Hütten (Department of Physics, Bielefeld University) for stimulating discussions; Dr. R. Ramlau and Ms. U. Köhler (MPICPfS) for TEM support; Dr. G. Auffermann (MPI-CPfS) for the chemical analysis; Dr. H. Borrmann (MPICPfS) for support of the HTXRD measurements; Prof. S. Kaskel (Department of Inorganic Chemistry, Technical University of Dresden) for the nitrogen adsorption measurements; Mr. R. Koban for kind help with sample preparation and magnetic measurements; Dr. L. Olivi (Elettra Sincrotrone Trieste) for stimulating discussion and kind help with the XANES experiments. The XANES measurements were performed at the Elettra Sincrotrone Trieste (Trieste, Italy) under the approval of proposal No. 20140471 and at the “National Synchrotron Radiation Research Center” (NSRRC, Hsinchu, Taiwan, China) under the approval of proposal No. 2013-2-027-4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changhai Wang or Claudia Felser.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Levin, A.A., Karel, J. et al. Size-dependent structural and magnetic properties of chemically synthesized Co-Ni-Ga nanoparticles. Nano Res. 10, 3421–3433 (2017). https://doi.org/10.1007/s12274-017-1554-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1554-y

Keywords

Navigation