Skip to main content
Log in

Diffusive transport of two charge equivalent and structurally similar ruthenium complex ions through graphene oxide membranes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Here, we report a study of ion transport across graphene oxide (GO) membranes of various thicknesses, made by vacuum filtration of GO aqueous solutions. The diffusive transport rates of two charge-equivalent ruthenium complex ions Ru(bpy)3 2+ and Ru(phen)3 2+, with a sub-angstrom size difference, are distinguishable through GO membranes and their ratio can be a unique tool for probing the transport-relevant pore structures. Pore and slit-dominant hindered diffusion models are presented and correlated to experimental results. Our analysis suggests that ion transport is mostly facilitated by large pores (larger than 1.75 nm in diameter) in the relatively thin GO membranes, while slits formed by GO stacking (less than 1.42 nm in width) become dominant only in thick membranes. By grafting PEG molecules to the lateral plane of GO sheets, membranes with enlarged interlayer spacing were engineered, which showed drastically increased ion transport rates and lower distinction among the two ruthenium complex ions, consistent with the prediction by the slit-dominant steric hindered diffusion model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, P. Z.; Zhu, M.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Xu, Z. P.; Zhu, H. W. Selective ion penetration of graphene oxide membranes. ACS Nano 2013, 7, 428–437.

    Article  Google Scholar 

  2. Hu, M.; Mi, B. X. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 2013, 47, 3715–3723.

    Article  Google Scholar 

  3. Schneider, G. F.; Kowalczyk, S. W.; Calado, V. E.; Pandraud, G.; Zandbergen, H. W.; Vandersypen, L. M. K.; Dekker, C. DNA translocation through graphene nanopores. Nano. Lett. 2010, 10, 3163–3167.

    Article  Google Scholar 

  4. Wells, D.; Belkin, M.; Comer, J.; Aksimentiev, A. Assessing graphene nanopores for sequencing DNA. Nano. Lett. 2012, 12, 4117–4123.

    Article  Google Scholar 

  5. Ignat, M.; Van Oers, C.; Vernimmen, J.; Mertens, M.; Potgieter-Vermaak, S.; Meynen, V.; Popovici, E.; Cool, P. Textural property tuning of ordered mesoporous carbon obtained by glycerol conversion using SBA-15 silica as template. Carbon 2010, 48, 1609–1618.

    Article  Google Scholar 

  6. Han, S.; Hyeon, T. Novel silica-sol mediated synthesis of high surface area porous carbons. Carbon 1999, 37, 1645–1647.

    Article  Google Scholar 

  7. Ryoo, R.; Joo, S.; Kruk, M.; Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 2001, 13, 677–681.

    Article  Google Scholar 

  8. Bagshaw, S.; Prouzet, E.; Pinnavaia, T. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 1995, 269, 1242–1244.

    Article  Google Scholar 

  9. Mi, B. X. Graphene oxide membranes for ionic and molecular sieving. Science 2014, 343, 740–742.

    Article  Google Scholar 

  10. Georgakilas, V.; Otyepka, M.; Bourlinos, A.; Chandra, V.; Kim, N.; Kemp, K.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156–6214.

    Article  Google Scholar 

  11. Girit, C. Ö.; Meyer, J.; Erni, R.; Rossell, M.; Kisielowski, C.; Yang, L.; Park, C.-H.; Crommie, M.; Cohen, M.; Louie, S.; et al. Graphene at the edge: Stability and dynamics. Science 2009, 323, 1705–1708.

    Article  Google Scholar 

  12. Koenig, S. P.; Wang, L. D.; Pellegrino, J.; Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 2012, 7, 728–732.

    Article  Google Scholar 

  13. O’Hern, S.; Boutilier, M.; Idrobo, J.-C.; Song, Y.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 2014, 14, 1234–1241.

    Article  Google Scholar 

  14. Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102, 4477–4482.

    Article  Google Scholar 

  15. Gómez-Navarro, C.; Meyer, J.; Sundaram, R.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic structure of reduced graphene oxide. Nano Lett. 2010, 10, 1144–1148.

    Article  Google Scholar 

  16. Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 2010, 22, 4467–4472.

    Article  Google Scholar 

  17. Raidongia, K.; Huang, J. X. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 2012, 134, 16528–16531.

    Article  Google Scholar 

  18. Guo, W.; Cheng, C.; Wu, Y. Z.; Jiang, Y. N.; Gao, J.; Li, D.; Jiang, L. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv. Mater. 2013, 25, 6064–6068.

    Article  Google Scholar 

  19. Joshi, R. K.; Carbone, P; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 2014, 343, 752–754.

    Article  Google Scholar 

  20. Han, Y.; Xu, Z.; Chao, G. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 2013, 23, 3693–3700.

    Article  Google Scholar 

  21. Huang, H. B.; Song, Z. G.; Wei, N.; Shi, L.; Mao, Y. Y.; Ying, Y. L.; Sun, L. W.; Xu, Z. P.; Peng, X. S. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun. 2013, 4, 2979.

    Google Scholar 

  22. Huang, H. B.; Mao, Y. Y.; Liu, Y. L.; Sun, L. W.; Peng, X. S. Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes. Chem. Commun. 2013, 49, 5963–5965.

    Article  Google Scholar 

  23. Sun, P. Z.; Zheng, F.; Zhu, M.; Song, Z. G.; Wang, K. L.; Zhong, M. L.; Wu, D. H.; Little, R.; Xu, Z. P.; Zhu, H. W. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions. ACS Nano 2014, 8, 850–859.

    Article  Google Scholar 

  24. Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 2012, 335, 442–444.

    Article  Google Scholar 

  25. Wei, N.; Peng, X. S.; Xu, Z. P. Understanding water permeation in graphene oxide membranes. ACS Appl. Mater. Interfaces 2014, 6, 5877–5883.

    Article  Google Scholar 

  26. Maloney, D. J.; MacDonnell, F. M. Λ-tris(1,10-phenanthroline-N,N′)-ruthenium(II) bis(hexafluorophosphate)-acetonitrile-diethyl ether (1/1/0.5). Acta Cryst C. 1997, 53, 705–707.

    Article  Google Scholar 

  27. Rillema, D. P.; Jones, D. S. Structure of tris(2,2′-bipyridyl) ruthenium(II) hexafluorophosphate, [Ru(bipy)3][PF6]2; X-ray crystallographic determination. J. Chem. Soc. Chem. Commun. 1979, 849–851.

    Google Scholar 

  28. Moret, M.-E.; Tavernelli, I.; Rothlisberger, U. A Combined QM/MM and classical molecular dynamics study of [Ru(bpy)3]2+ in water. J. Phys Chem. B. 2009, 113, 7737–7744.

    Article  Google Scholar 

  29. Szymczak, J. J.; Hofmann, F. D.; Meuwly, M. Structure and dynamics of solvent shells around photoexcited metal complexes. Phys. Chem. Chem. Phys. 2013, 15, 6268–6277.

    Article  Google Scholar 

  30. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  Google Scholar 

  31. Kovtyukhova, N.; Ollivier, P.; Martin, B.; Mallouk, T.; Chizhik, S.; Buzaneva, E.; Gorchinskiy, A. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 1999, 11, 771–778.

    Article  Google Scholar 

  32. Gao, X. G.; Tang, X. W. Effective reduction of graphene oxide thin films by a fluorinating agent: Diethylaminosulfur trifluoride. Carbon 2014, 76, 133–140.

    Article  Google Scholar 

  33. Majumder, M.; Chopra, N.; Hinds, B. Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. J. Am. Chem. Soc. 2005, 127, 9062–9070.

    Article  Google Scholar 

  34. Wilke, C.; Chang, P. Correlation of diffusion coefficients in dilute solutions. AIChE J. 1955, 1, 264–270.

    Article  Google Scholar 

  35. Martin, C. R.; Rubinstein, I.; Bard, A. J. The heterogeneous rate constant for the Ru(bpy)3 3+/2+ couple at a glassy carbon electrode in aqueous solution. J. Electroanal. Chem. 1983, 151, 267–271.

    Article  Google Scholar 

  36. O’Hern, S. C.; Stewart, C. A.; Boutilier, M. S. H.; Idrobo, J.-C.; Bhaviripudi, S.; Das, S. K.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 2012, 6, 10130–10138.

    Article  Google Scholar 

  37. Boutilier, M. S. H.; Sun, C. Z.; O’Hern, S. C.; Au, H.; Hadjiconstantinou, N. G.; Karnik, R. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. ACS Nano 2014, 8, 841–849.

    Article  Google Scholar 

  38. Wei, N.; Peng, X. S.; Xu, Z. P. Breakdown of fast water transport in graphene oxides. Phys. Rev. E 2014, 89, 012113.

    Article  Google Scholar 

  39. Deen, W. M. Hindered transport of large molecules in liquid-filled pores. AIChE J. 1987, 33, 1409–1425.

    Article  Google Scholar 

  40. Dechadilok, P.; Deen, W. Hindrance factors for diffusion and convection in pores. Ind. Eng. Chem. Res. 2006, 45, 6953–6959.

    Article  Google Scholar 

  41. Silva, V.; Prádanos, P.; Palacio, L.; Hernández, A. Alternative pore hindrance factors: What one should be used for nanofiltration modelization? Desalination 2009, 245, 606–613.

    Article  Google Scholar 

  42. Bungay, P. M.; Brenner, H. The motion of a closely-fitting sphere in a fluid-filled tube. Int. J. Multiph. Flow 1973, 1, 25–56.

    Article  Google Scholar 

  43. Chun, M.-S.; Phillips, R. J. Electrostatic partitioning in slit pores by Gibbs ensemble Monte Carlo simulation. AIChE J. 1997, 43, 1194–1203.

    Article  Google Scholar 

  44. Dechadilok, P.; Deen, W. M. Electrostatic and electrokinetic effects on hindered diffusion in pores. J. Membr. Sci. 2009, 336, 7–16.

    Article  Google Scholar 

  45. Chen, S. B. Electrostatic interaction and hindered diffusion of ion-penetrable spheres in a slit pore. J. Colloid Interface Sci. 1998, 205, 354–364.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowu (Shirley) Tang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coleman, M., Tang, X.(. Diffusive transport of two charge equivalent and structurally similar ruthenium complex ions through graphene oxide membranes. Nano Res. 8, 1128–1138 (2015). https://doi.org/10.1007/s12274-014-0593-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0593-x

Keywords

Navigation