Skip to main content
Log in

Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Monodisperse Ni/Pd core/shell nanoparticles (NPs) have been synthesized by sequential reduction of nickel(II) acetate and palladium(II) bromide in oleylamine (OAm) and trioctylphosphine (TOP). The Ni/Pd NPs have a narrow size distribution with a mean particle size of 10 nm and a standard deviation of 5% with respect to the particle diameter. Mechanistic studies showed that the presence of TOP was essential to control the reductive decomposition of Ni-TOP and Pd-TOP, and the formation of Ni/Pd core/shell NPs. Using the current synthetic protocol, the composition of the Ni/Pd within the core/shell structure can be readily tuned by simply controlling the initial molar ratio of the Ni and Pd salts. The as-synthesized Ni/Pd core/shell NPs were supported on graphene (G) and used as catalyst in Suzuki-Miyaura cross-coupling reactions. Among three different kinds of Ni/Pd NPs tested, the Ni/Pd (Ni/Pd = 3/2) NPs were found to be the most active catalyst for the Suzuki-Miyaura cross-coupling of arylboronic acids with aryl iodides, bromides and even chlorides in a dimethylformamide/water mixture by using K2CO3 as a base at 110 °C. The G-Ni/Pd was also stable and reusable, providing 98% conversion after the 5th catalytic run without showing any noticeable Ni/Pd composition change. The G-Ni/Pd structure reported in this paper combines both the efficiency of a homogeneous catalyst and the durability of a heterogeneous catalyst, and is promising catalyst candidate for various Pd-based catalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. Catalysts for Suzuki-Miyaura coupling processes Scope and studies of the effect of ligand structure. J. Am. Chem. Soc. 2005, 127, 4685–4696.

    Article  CAS  Google Scholar 

  2. Kakiuchi, N.; Maeda, Y.; Nishumura, T.; Uemura, S. Pd(II)-hydrotalcite-catalyzed oxidation of alcohols to aldehydes and ketones using atmospheric pressure of air. J. Org. Chem. 2001, 66, 6620–6625.

    Article  CAS  Google Scholar 

  3. Wang, Y. Q.; Lu, S. M.; Zhou, Y. G. Highly enantioselective Pd-catalyzed asymmetric hydrogenation of activated imines. J. Org. Chem. 2007, 72, 3729–3734.

    Article  CAS  Google Scholar 

  4. Mazumder, V.; Sun, S. H. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 2009, 131, 4588–4589.

    Article  CAS  Google Scholar 

  5. Reetz, M. T.; Westermann, E. Phosphane-free palladium-catalyzed coupling reactions: The decisive role of Pd nanoparticles. Angew. Chem. Int. Ed. 2000, 39, 165–168.

    Article  CAS  Google Scholar 

  6. Kogan, V.; Aizenshtat, Z.; Popovitz-Biro, R.; Neumann, R. Carbon-carbon and carbon-nitrogen coupling reactions catalyzed by palladium nanoparticles derived from a palladium substituted Keggin-type polyoxometalate. Org. Lett. 2002, 4, 3529–3532.

    Article  CAS  Google Scholar 

  7. Aiken, J. D.; Finke, R. G. A review of modern transition-metal nanoclusters: Their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A-Chem. 1999, 145, 1–44.

    Article  CAS  Google Scholar 

  8. Schmid, G. Nanoparticles: From Theory to Application; Wiley-VCH: Weinheim, 2004.

    Google Scholar 

  9. Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910.

    Article  CAS  Google Scholar 

  10. Schmid, G.; Lehnert, A.; Malm, J. O.; Bovin, J. O. Ligand-stabilized bimetallic colloids identified by HRTEM and EDX. Angew. Chem. Int. Ed. 1991, 30, 874–876.

    Article  Google Scholar 

  11. Teranishi, T.; Miyake, M. Novel synthesis of monodispersed Pd/Ni nanoparticles. Chem. Mater. 1999, 11, 3414–3416.

    Article  CAS  Google Scholar 

  12. Sao-Joao, S.; Giorgio, S.; Penisson, J. M.; Chapon, C.; Bourgeois, S.; Henry, C. Structure and deformations of Pd-Ni core-shell nanoparticles. J. Phys. Chem. B 2005, 109, 342–347.

    Article  CAS  Google Scholar 

  13. Son, S. U.; Jang, Y.; Park, J.; Na, H. B.; Park, H. M.; Yun, H. J.; Lee, J.; Hyeon, T. Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for Sonogashira coupling reactions. J. Am. Chem. Soc. 2004, 126, 5026–5027.

    Article  CAS  Google Scholar 

  14. Wu, Y. E.; Wang, D. S.; Zhao, P.; Niu, Z. Q.; Peng, Q.; Li, Y. D. Monodispersed Pd-Ni nanoparticles: Composition control synthesis and catalytic properties in the Miyaura-Suzuki reaction. Inorg. Chem. 2011, 50, 2046–2048.

    Article  CAS  Google Scholar 

  15. Sun, D. H.; Mazumder, V.; Metin, Ö.; Sun, S. H. Catalytic hydrolysis of ammonia borane via cobalt palladium nano-particles. ACS Nano 2011, 5, 6458–6464.

    Article  CAS  Google Scholar 

  16. Mazumder, V.; Chi, M. F.; Mankin, M. N.; Liu, Y.; Metin, Ö.; Sun, D. H.; More, K. L.; Sun, S. H. A facile synthesis of MPd (M = Co, Cu) nanoparticles and their catalysis for formic acid oxidation. Nano Lett. 2012, 12, 1102–1106.

    Article  CAS  Google Scholar 

  17. Miyaura, N.; Yanagi, T.; Suzuki, A. The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases. Synth. Commun. 1981, 11, 513–519.

    Article  CAS  Google Scholar 

  18. Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 1995, 95, 2457–2483.

    Article  CAS  Google Scholar 

  19. de Mejere, A.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions; Wiley-VCH: Weinheim, 2004.

    Book  Google Scholar 

  20. Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 2005, 44, 7852–7872.

    Article  CAS  Google Scholar 

  21. Metin, Ö.; Durap, F.; Aydemir, M.; Özkar, S. Palladium(0) nanoclusters stabilized by poly(4-styrenesulfonic acid-co-maleic acid) as an effective catalyst for Suzuki-Miyaura cross-coupling reactions in water. J. Mol. Catal. A-Chem. 2011, 337, 39–44.

    Article  CAS  Google Scholar 

  22. Metin, Ö.; Kayhan, E.; Özkar, S.; Schneider, J. J. Palladium nanoparticles supported on chemically derived graphene: An efficient and reusable catalyst for the dehydrogenation of ammonia borane. Int. J. Hydrog. Energy 2012, 37, 8161–8169.

    Article  CAS  Google Scholar 

  23. Guo, S. J.; Dong, S. J.; Wang, E. K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 2010, 4, 547–555.

    Article  CAS  Google Scholar 

  24. Ai, K. L.; Liu, Y. L.; Lu, L. H.; Cheng, X. L.; Huo, L. H. A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent. J. Mater. Chem. 2011, 21, 3365–3370.

    Article  CAS  Google Scholar 

  25. Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science, 2nd Edition; Kluwer Academic/Plenum: New York, 2009.

    Google Scholar 

  26. Gao, S. J.; Sun, S. H. FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 2492–2495.

    Article  Google Scholar 

  27. See supporting information for the optimization experiments performed on G-Ni/Pd catalyzed Suzuki-Miyaura cross-coupling reactions.

  28. For the catalytic activities of various Pd nanoparticles catalyst system tested in the Suzuki-Miyaura cross-couplings under similar conditions. See: Durap, F.; Metin, Ö.; Aydemir, M.; Özkar, S. New route to synthesis of PVP-stabilized palladium(0) nanoclusters and their enhanced catalytic activity in Heck and Suzuki cross-coupling reactions. Appl. Organomet. Chem. 2009, 23, 498–503.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Önder Metin or Shouheng Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metin, Ö., Ho, S.F., Alp, C. et al. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Res. 6, 10–18 (2013). https://doi.org/10.1007/s12274-012-0276-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0276-4

Keywords

Navigation