Skip to main content
Log in

Size-tunable nanoparticles composed of dextran-b-poly(D,L-lactide) for drug delivery applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) formulated using self-assembly of block copolymers have attracted significant attention as nano-scaled drug delivery vehicles. Here we report the development of a biodegradable NP using self-assembly of a linear amphiphilic block copolymer, Dex-b-PLA, composed of poly(D,L-lactide), and dextran. The size of the NPs can be precisely tuned between 15 and 70 nm by altering the molecular weight (M W) of the two polymer chains. Using doxorubicin as a model drug, we demonstrated that the NPs can carry up to 21% (w/w) of the drug payload. The release profile of doxorubicin from NPs showed sustained release for over 6 days. Using a rat model, we explored the pharmacokinetics profiles of Dex-b-PLA NPs, and showed proof-of-concept that long circulation lifetime of the NPs can be achieved by tuning the M W of Dex-b-PLA block copolymer. While the terminal half-life of Dex-b-PLA NPs (29.8 h) was similar to that observed in poly(ethylene glycol)-coated (PEG-coated) NPs (27.0 h), 90% of the injected Dex-b-PLA NPs were retained in the blood circulation for 38.3 h after injection, almost eight times longer than the PEG-coated NPs. The area under curve (AUC) of Dex-b-PLA NPs was almost four times higher than PEG-based NPs. The biodistribution study showed lower accumulation of Dex-b-PLA NPs in the spleen with 19.5% initial dose per gram tissue (IDGT) after 24 h compared to PEG-coated poly(lactide-co-glycolide) (PLGA) NPs (29.8% IDGT). These studies show that Dex-b-PLA block copolymer is a promising new biomaterial for making controlled nanoparticles as drug delivery vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jain, R. K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664.

    Article  CAS  Google Scholar 

  2. Gu, F. X.; Karnik, R.; Wang, A. Z.; Alexis, F.; Levy-Nissenbaum, E.; Hong, S.; Langer, R. S.; Farokhzad, O. C. Targeted nanoparticles for cancer therapy. Nano Today 2007, 2, 14–21.

    Article  Google Scholar 

  3. Pridgen, E. M.; Langer, R.; Farokhzad, O. C. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine 2007, 2, 669–680.

    Article  CAS  Google Scholar 

  4. Kim, D. K.; Dobson, J. Nanomedicine for targeted drug delivery. J. Mater. Chem. 2009, 19, 6294–6307.

    Article  CAS  Google Scholar 

  5. Gref, R.; Minamitake, Y.; Peracchia, M. T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science 1994, 263, 1600–1603.

    Article  CAS  Google Scholar 

  6. Gaucher, G.; Marchessault, R. H.; Leroux, J. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J. Control. Release 2010, 143, 2–12.

    Article  CAS  Google Scholar 

  7. Dong, Y.; Feng, S. In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy. Biomaterials 2007, 28, 4154–4160.

    Article  CAS  Google Scholar 

  8. Gursahani, H.; Riggs-Sauthier, J.; Pfeiffer, J.; Lechuga-Ballesteros, D.; Fishburn, C. S. Absorption of polyethylene glycol (PEG) polymers: The effect of PEG size on permeability. J. Pharm. Sci. 2009, 98, 2847–2856.

    Article  CAS  Google Scholar 

  9. Yang, J.; Cho, E.; Seo, S.; Lee, J.; Yoon, H.; Suh, J.; Huh, Y.; Haam, S. Enhancement of cellular binding efficiency and cytotoxicity using polyethylene glycol base triblock copolymeric nanoparticles for targeted drug delivery. J. Biomed. Mater. Res. A 2008, 84A, 273–280.

    Article  CAS  Google Scholar 

  10. Wei, X.; Gong, C.; Gou, M.; Fu, S.; Guo, Q.; Shi, S.; Luo, F.; Guo, G.; Qiu, L.; Qian, Z. Biodegradable poly(ɛ-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system. Int. J. Pharm. 2009, 381, 1–18.

    Article  CAS  Google Scholar 

  11. Bazile, D.; Prudhomme, C.; Bassoullet, M. T.; Marlard, M.; Spenlehauer, G.; Veillard, M. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci. 1995, 84, 493–498.

    Article  CAS  Google Scholar 

  12. Lemarchand, C.; Gref, R.; Couvreur, P. Polysaccharide-decorated nanoparticles. Eur. J. Pharm. Biopharm. 2004, 58, 327–341.

    Article  CAS  Google Scholar 

  13. Kailasan, A.; Yuan, Q.; Yang, H. Synthesis and characterization of thermoresponsive polyamidoamine-polyethylene glycol-poly(D,L-lactide) core-shell nanoparticles. Acta Biomater. 2010, 6, 1131–1139.

    Article  CAS  Google Scholar 

  14. Owens, D. E.; Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307, 93–102.

    Article  CAS  Google Scholar 

  15. Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008, 14, 1310–1316.

    Article  CAS  Google Scholar 

  16. Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 2008, 3, 145–150.

    Article  CAS  Google Scholar 

  17. Karnik, R.; Gu, F.; Basto, P.; Cannizzaro, C.; Dean, L.; Kyei-Manu, W.; Langer, R.; Farokhzad, O. C. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 2008, 8, 2906–2912.

    Article  CAS  Google Scholar 

  18. Goodwin, A. P.; Tabakman, S. M.; Welsher, K.; Sherlock, S. P.; Prencipe, G.; Dai, H. Phospholipid-dextran with a single coupling point: A useful amphiphile for functionalization of nanomaterials. J. Am. Chem. Soc. 2009, 131, 289–296.

    Article  CAS  Google Scholar 

  19. Nouvel, C.; Frochot, C.; Sadtler, V.; Dubois, P.; Dellacherie, E.; Six, J. Polylactide-grafted dextrans: Synthesis and properties at interfaces and in solution. Macromolecules 2004, 37, 4981–4988.

    Article  CAS  Google Scholar 

  20. Chittasupho, C.; Xie, S.; Baoum, A.; Yakovleva, T.; Siahaan, T. J.; Berkland, C. J. ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur. J. Pharm. Sci. 2009, 37, 141–150.

    Article  CAS  Google Scholar 

  21. Gu, F.; Zhang, L.; Teply, B. A.; Mann, N.; Wang, A.; Radovic-Moreno, A. F.; Langer, R.; Farokhzad, O. C. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 2586–2591.

    Article  CAS  Google Scholar 

  22. Riley, T.; Govender, T.; Stolnik, S.; Xiong, C. D.; Garnett, M. C.; Illum, L.; Davis, S. S. Colloidal stability and drug incorporation aspects of micellar-like PLA-PEG nanoparticles. Colloids Surf. B-Biointerfaces. 1999, 19, 147–159.

    Article  Google Scholar 

  23. Riley, T.; Stolnik, S.; Heald, C. R.; Xiong, C. D.; Garnett, M. C.; Illum, L.; Davis, S. S.; Purkiss, S. C.; Barlow, R. J.; Gellert, P. R. Physicochemical evaluation of nanoparticles assembled from poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) block copolymers as drug delivery vehicles. Langmuir 2001, 17, 3168–3174.

    Article  CAS  Google Scholar 

  24. Zahr, A. S.; Davis, C. A.; Pishko, M. V. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir 2006, 22, 8178–8185.

    Article  CAS  Google Scholar 

  25. Dhar, S.; Gu, F. X.; Langer, R.; Farokhzad, O. C.; Lippard, S. J. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 17356–17361.

    Article  CAS  Google Scholar 

  26. Shuai, X. T.; Ai, H.; Nasongkla, N.; Kim, S.; Gao, J. M. Micellar carriers based on block copolymers of poly(ɛ-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J. Control. Release 2004, 98, 415–426.

    Article  CAS  Google Scholar 

  27. He, Y. Y.; Zhang, Y.; Gu, C. H.; Dai, W. F.; Lang, M. D. Micellar carrier based on methoxy poly(ethylene glycol)-block-poly(epsilon-caprolactone) block copolymers bearing ketone groups on the polyester block for doxorubicin delivery. J. Mater. Sci.-Mater. Med. 2010, 21, 567–574.

    Article  CAS  Google Scholar 

  28. Missirlis, D.; Kawamura, R.; Tirelli, N.; Hubbell, J. A. Doxorubicin encapsulation and diffusional release from stable, polymeric, hydrogel nanoparticles. Eur. J. Pharm. Sci. 2006, 29, 120–129.

    Article  CAS  Google Scholar 

  29. Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2001, 47, 113–131.

    Article  CAS  Google Scholar 

  30. Alpert, A. J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. A 1990, 499, 177–196.

    Article  CAS  Google Scholar 

  31. Drummond, D. C.; Meyer, O.; Hong, K.; Kirpotin, D. B.; Papahadjopoulos, D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev. 1999, 51, 691–744.

    CAS  Google Scholar 

  32. Safra, T.; Muggia, F.; Jeffers, S.; Tsao-Wei, D. D.; Groshen, S.; Lyass, O.; Henderson, R.; Berry, G.; Gabizon, A. Pegylated liposomal doxorubicin (doxil): Reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann. Oncol. 2000, 11, 1029–1033.

    Article  CAS  Google Scholar 

  33. Magenheim, B.; Levy, M. Y.; Benita, S. A new in vitro technique for the evaluation of drugrelease profile from colloidal carriers-ultrafiltration technique at lowpressure. Int. J. Pharm. 1993, 94, 115–123.

    Article  CAS  Google Scholar 

  34. Esmaeili, F.; Ghahremani, M. H.; Ostad, S. N.; Atyabi, F.; Seyedabadi, M.; Malekshahi, M. R.; Amini, M.; Dinarvand, R. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J. Drug Target. 2008, 16, 415–423.

    Article  CAS  Google Scholar 

  35. Dobrovoiskaia, M. A.; Clogston, J. D.; Neun, B. W.; Hall, J. B.; Patri, A. K.; McNeil, S. E. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett. 2008, 8, 2180–2187.

    Article  Google Scholar 

  36. Kim, D.; El-Shall, H.; Dennis, D.; Morey, T. Interaction of PLGA nanoparticles with human blood constituents. Colloid Surf. B-Biointerfaces 2005, 40, 83–91.

    Article  Google Scholar 

  37. Fischer, D.; Li, Y. X.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis. Biomaterials 2003, 24, 1121–1131.

    Article  CAS  Google Scholar 

  38. Sacco, J. J.; Botten, J.; Macbeth, F.; Bagust, A.; Clark, P. The average body surface area of adult cancer patients in the UK: A multicentre retrospective study. PLoS One 2010, 5, e8933–e8933.

    Article  Google Scholar 

  39. Kusnierz-Glaz, C. R.; Still, B. J.; Amano, M.; Zukor, J. D.; Negrin, R. S.; Blume, K. G.; Strober, S. Granulocyte colonystimulating factor-induced comobilization of CD4CD8 T cells and hematopoietic progenitor cells (CD34+) in the blood of normal donors. Blood 1997, 89, 2586–2595.

    CAS  Google Scholar 

  40. Yang, Z.; Leon, J.; Martin, M.; Harder, J. W.; Zhang, R.; Liang, D.; Lu, W.; Tian, M.; Gelovani, J. G.; Qiao, A. et al. Pharmacokinetics and biodistribution of near-infrared fluorescence polymeric nanoparticles. Nanotechnology 2009, 20, 165101.

    Article  Google Scholar 

  41. Gaucher, G.; Asahina, K.; Wang, J.; Leroux, J. Effect of poly(N-vinyl-pyrrolidone)-block-poly(D,L-lactide) as coating agent on the opsonization, phagocytosis, and pharmacokinetics of biodegradable nanoparticles. Biomacromolecules 2009, 10, 408–416.

    Article  CAS  Google Scholar 

  42. Gaur, U.; Sahoo, S. K.; De, T. K.; Ghosh, P. C.; Maitra, A.; Ghosh, P. K. Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. Int. J. Pharm. 2000, 202, 1–10.

    Article  CAS  Google Scholar 

  43. He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31, 3657–3666.

    Article  CAS  Google Scholar 

  44. Lee, H.; Fonge, H.; Hoang, B.; Reilly, R. M.; Allen, C. The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Mol. Pharm. 2010, 7, 1195–1208.

    Article  CAS  Google Scholar 

  45. Allen, T. M.; Hansen, C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim. Biophys. Acta-Biomembr. 1991, 1068, 133–141.

    Article  CAS  Google Scholar 

  46. Rehor, A.; Schmoekel, H.; Tirelli, N.; Hubbell, J. A. Functionalization of polysulfide nanoparticles and their performance as circulating carriers. Biomaterials 2008, 29, 1958–1966.

    Article  CAS  Google Scholar 

  47. Portet, D.; Denizot, B.; Rump, E.; Hindre, F.; Le Jeune, J.; Jallet, P. Comparative biodistribution of thin-coated iron oxide nanoparticles TCION: Effect of different bisphosphonate coatings. Drug Dev. Res. 2001, 54, 173–181.

    Article  CAS  Google Scholar 

  48. Li, S.; Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 2008, 5, 496–504.

    Article  CAS  Google Scholar 

  49. Peracchia, M. T.; Fattal, E.; Desmaele, D.; Besnard, M.; Noel, J. P.; Gomis, J. M.; Appel, M.; d’Angelo, J.; Couvreur, P. Stealth® PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J. Control. Release 1999, 60, 121–128.

    Article  CAS  Google Scholar 

  50. Chouly, C.; Pouliquen, D.; Lucet, I.; Jeune, J. J.; Jallet, P. Development of superparamagnetic nanoparticles for MRI: Effect of particle size, charge and surface nature on biodistribution. J. Microencapsul. 1996, 13, 245–255.

    Article  CAS  Google Scholar 

  51. Passirani, C.; Barratt, G.; Devissaguet, J.; Labarre, D. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm. Res. 1998, 15, 1046–1050.

    Article  CAS  Google Scholar 

  52. Meerasa, A.; Huang, J. G.; Gu, F. X. CH(50): A revisited hemolytic complement consumption assay for evaluation of nanoparticles and blood plasma protein interaction. Curr. Drug Deliv. 2011, 8, 290–298.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank X. Gu.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, M.S., Liu, S., Chen, Y.Y. et al. Size-tunable nanoparticles composed of dextran-b-poly(D,L-lactide) for drug delivery applications. Nano Res. 5, 49–61 (2012). https://doi.org/10.1007/s12274-011-0184-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0184-z

Keywords

Navigation