Skip to main content
Log in

Optimization of a two-step biodiesel production process comprised of lipid extraction from blended sewage sludge and subsequent lipid transesterification

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

As a preliminary research for the development of feasible and economical biodiesel production using blended sewage sludge (BSS), a sustainable and non-edible feedstock, the two-step process comprised of lipid extraction (first step) and subsequent transesterification of the lipid with methanol (second step) was optimized. The total lipid content of the free fatty acid (FFA) containing BSS was determined to be 14.5% using the Blight and Dyer method with ultrasonication pretreatment, where 40.8% of the total lipid content was FFAs. The highest lipid yield of 13.5% (g-lipid/g-dry sludge), corresponding to 92.9% extraction efficiency, was obtained using 20 mL-solvent/g-dry sludge of the total solvent mixture with a 2/1 (v/v) ratio of chloroform and methanol. In the transesterification step, an acidic catalyst (H2SO4) exhibited significantly higher performance than an alkaline catalyst (NaOH). Thus, the optimal reaction conditions were 0.2% (g/g-lipid) H2SO4, 20 mL-methanol/g-lipid, 70°C and 8 h, respectively. Although the reaction temperature was increased from 50 to 70°C, we could save H2SO4, methanol, and a reaction time by 75, 50 and 66.7%, respectively compared with previous optimal conditions suggest by others’ research. Under our optimal conditions, a biodiesel yield of 39.0% (g-biodiesel/g-lipid) and an overall yield (i.e., extraction and transesterification) of 5.3% (g-biodiesel/g-BSS) were achieved, which are substantially higher than those from others’ research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Go, Y. W. and S. H. Yeom (2014) Application of pseudo-two phase partitioning bioreactor (P-TPPB) to the production of biodiesel. Bioproc. Biosyst. Eng. 37: 269–275.

    Article  CAS  Google Scholar 

  2. Lee, J. H., S. B. Kim, H. Y. Yoo, Y. J. Suh, G. B. Kang, W. I. Jang, J. Kang, C. Park, and S. W. Kim (2013) Biodiesel production by enzymatic process using jatropha oil and waste soybean oil. Biotechnol. Bioproc. Eng. 18: 703–708.

    Article  CAS  Google Scholar 

  3. Huang, J., J. Xia, W. Jiang, Y. Li, and J. Li (2015) Biodiesel production from microalgae oil catalyzed by a recombinant lipase. Bioresour. Technol. 180: 47–53.

    Article  CAS  Google Scholar 

  4. Kwon, M. H. and S. H. Yeom (2015) Optimization of one-step extraction and transesterification process for biodiesel production from the marine microalga Nannochloropsis sp. KMMCC 290 cultivated in a raceway pond. Biotechnol. Bioproc. Eng. 20: 276–283.

    Article  CAS  Google Scholar 

  5. Chen, L., T. Liu, W. Zhang, X. Chen, and J. Wang (2012) Biodiesel production from algae oil high in free fatty acids by twostep catalytic conversion. Bioresour. Technol. 111: 208–214.

    Article  CAS  Google Scholar 

  6. Al-Hamamre, Z., S. Foerster, F. Hartmann, M. Kröger, and M. Kaltschmitt (2012) Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel 96: 70–76.

    Article  CAS  Google Scholar 

  7. Nautiyal, P., K. A. Subramanian, and M. G. Dastidar (2014) Production and characterization of biodiesel from algae. Fuel Proc. Technol. 120: 79–88.

    Article  CAS  Google Scholar 

  8. Zhu, F., L. Zhao, H. Jiang, Z. Zhang, Y. Xiong, J. Qi, and J. Wang (2014) Comparison of the lipid content and biodiesel production from municipal sludge using three extraction methods. Energy Fuels 28: 5277–5283.

    Article  CAS  Google Scholar 

  9. Hui, L., X. Yuan, G. Zeng, D. Huang, H. Huang, J. Tong, Q. You, J. Zhang, and M. Zhou (2010) The formation of bio-oil from sludge by deoxy-liquefaction in supercritical ethanol. Bioresour. Technol. 101: 2860–2866.

    Article  Google Scholar 

  10. Dufreche, S., R. Hernandez, T. French, D. Sparks, M. Zappi, and E. Alley (2007) Extraction of lipids from municipal wastewater plant microorganisms for production of biodiesel. J. Amer. Oil Chem. Soc. 84: 181–187.

    Article  CAS  Google Scholar 

  11. Ministry of environment (2013) 2030: The plan for reducing sewage sludge, and production and utilization of biogas.

    Google Scholar 

  12. Choi, O. K., J. S. Song, D. K. Cha, and J. W. Lee (2014) Biodiesel production from wet municipal sludge: Evaluation of in situ transesterification using xylene as a cosolvent. Bioresour. Technol. 166: 51–56.

    Article  CAS  Google Scholar 

  13. Tyagi, V. K. and S. L. Lo (2013) Sludge: A waste or renewable source for energy and resources recovery? Renew. Sustain. Energy Rev. 25: 708–728.

    Article  CAS  Google Scholar 

  14. Fytili, D. and A. Zabaniotou (2008) Utilization of sewage sludge in EU application of old and new methods-A review. Renew. Sustain. Energy Rev. 12: 116–140.

    Article  CAS  Google Scholar 

  15. Mondala, A., K. Liang, H. Toghiani, R. Hernandez, and T. French (2009) Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresour. Technol. 100: 1203–1210.

    Article  CAS  Google Scholar 

  16. Olkiewicz, M., A. Fortuny, F. Stüber, A. Fabregat, J. Font, and C. Bengoa (2012) Evaluation of different sludges from WWTP as a potential source for biodiesel production. Procedia. Eng. 42: 634–643.

    Article  Google Scholar 

  17. Siddiquee, M. N. and S. Rohani (2011) Experimental analysis of lipid extraction and biodiesel production from wastewater sludge. Fuel Proc. Technol. 92: 2241–2251.

    Article  CAS  Google Scholar 

  18. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substance. Anal. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  19. Bligh, E. G. and W. J. Dyer (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    Article  CAS  Google Scholar 

  20. Rukunudin, I. H., P. J. White, C. J. Bern, and T. B. Bailey (1998) A modified method for determining free fatty acids from small soybean oil sample sizes. JAOCS. 75: 563–568.

    CAS  Google Scholar 

  21. Tanzi, C. D., M. A. Vian, and F. Chemat (2013) New procedure for extraction of algal lipids from wet biomass: A green clean and scalable process. Bioresour. Technol. 134: 271–275.

    Article  Google Scholar 

  22. Olkiewicz, M., A. Fortuny, F. Stüber, A. Fabregat, J. Font, and C. Bengoa (2015) Effects of pre-treatments on the lipid extraction and biodiesel production from municipal WWTP sludge. Fuel 141: 250–257.

    Article  CAS  Google Scholar 

  23. Melero, J. A., R. Sánchez-Vázquez, I. A. Vasiliadou, F. Martínez Castillejo, L. F. Bautista, J. Iglesias, G. Morales, and R. Molina (2015) Municipal sewage sludge to biodiesel by simultaneous extraction and conversion of lipids. Energy Con. Manage. 103: 111–118.

    Article  CAS  Google Scholar 

  24. Sangaletti-Gerhard, N., M. Cea, V. Risco, and R. Navia (2015) In situ biodiesel production from greasy sewage sludge using acid and enzymatic catalysts. Bioresour. Technol. 179: 63–70.

    Article  CAS  Google Scholar 

  25. Jeong, G. T. and D. H. Park (2015) Optimization of lipid extraction from marine green macroalgae as biofuel resources. Kor. J. Chem. Eng. 32: 2463–2467.

    Article  CAS  Google Scholar 

  26. Siddiquee, M. N. and S. Rohani (2011) Lipid extraction and biodiesel production from municipal sewage sludges: A review. Renew. Sustain. Energy Rev. 15: 1067–1072.

    Article  CAS  Google Scholar 

  27. Brown, W. H., B. L. Iverson, E. V. Anslyn, and C. S. Foote (2014) Organic chemistry. 7th ed., p. 312. Cengage learning, UK, USA.

    Google Scholar 

  28. Hidalgo, P., G. Ciudad, and R. Navia (2016) Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production. Bioresour. Technol. 201: 360–364.

    Article  CAS  Google Scholar 

  29. Huynh, L. H., N. S. Kasim, and Y. H. Ju (2010) Extraction and analysis of neutral lipids from activated sludge with and without sub-critical water pre-treatment. Bioresour. Technol. 101: 8891–8896.

    Article  CAS  Google Scholar 

  30. Jeon, J. M., H. W. Choi, G. C. Yoo, Y. K. Choi, K. Y. Choi, H. Y. Park, S. H. Park, Y. G. Kim, H. J. Kim, S. H. Lee, Y. K. Lee, and Y. H. Yang (2013) New mixture composition of organic solvent for efficient extraction of lipids from Chlorella vulgaris. Biomass Bioenergy 59: 279–284.

    Article  CAS  Google Scholar 

  31. Ramluckan, K., K. G. Moodley, and F. Bux (2014) An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel 116: 103–108.

    Article  CAS  Google Scholar 

  32. Ryckebosch, E., K. Muylaert, and I. Foubert (2012) Optimization of an analytical procedure for extraction of lipids from microalgae. J. Am. Oil Chem. Soc. 89: 189–198.

    Article  CAS  Google Scholar 

  33. Tran, H. L., Y. J. Ryu, D. H. Seong, S. M. Lim, and C. G. Lee (2013) An effective acid catalyst for biodiesel production from impure raw feedstocks. Biotechnol. Bioproc. Eng. 18: 242–247.

    Article  CAS  Google Scholar 

  34. Hayyan, A., Md. Z. Alam, M. E. S. Mirghani, N. A. Kabbashi, N. I. N. M. Hakmi, Y. M. Siran, and S. Tahiruddin (2011) Reduction of high content of free fatty acid in sludge palm oil via acid catalyst for biodiesel production. Fuel Proc. Technol. 92: 920–924.

    Article  CAS  Google Scholar 

  35. Zhou, Q., H. Zhang, F. Chang, H. Li, H. Pan, W. Xue, D. Y. Hu, and S. Yang (2015) Nano La2O3 as a heterogeneous catalyst for biodiesel synthesis by transesterification of Jatropha curcas L. oil. J. Industrial Eng. Chem. 31: 385–392.

    Article  CAS  Google Scholar 

  36. Elsheikh, Y. A., Z. Man, and F. H. Akhtar (2013) An acidic ionic liquid-conventional alkali-catalyzed biodiesel production process. Kor J. Chem. Eng. 31: 431–435.

    Article  Google Scholar 

  37. Sheikh, R., M. S. Choi, J. S. Im, and Y. H. Park (2013) Study on the solid acid catalysts in biodiesel production from high acid value oil. J. Industrial Eng. Chem. 19:1413-419.

    Article  CAS  Google Scholar 

  38. Thanh, L. T., K. Oitsu, Y. Sadanaga, N. Takenaka, Y. Maeda, and H. Bandow (2010) A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: A practical and economical approach to produce high quality biodiesel fuel. Bioresour. Technol. 101: 5394–5401.

    Article  CAS  Google Scholar 

  39. Deng, X., Z. Fang, Y. H. Liu, and C. L. Yu (2011) Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst. Energy 36: 777–784.

    Article  CAS  Google Scholar 

  40. Macías-Sánchez, M. D., A. Robles-Medina, E. Hita-Peña, M. J. Jiménez-Callejón, L. Estéban-Cerdán, P. A. González-Moreno, and E. Molina-Grima (2015) Biodiesel production from wet microalgal biomass by direct transesterification. Fuel 150: 14–20.

    Article  Google Scholar 

  41. Leung, D. Y. C., B. C. P. Koo, and Y. Guo (2006) Degradation of biodiesel under different storage conditions. Bioresour. Technol. 97: 250–256.

    Article  CAS  Google Scholar 

  42. Wang Y., S. Feng, X. Bai, J. Zhao, and S. Xia (2016) Scum sludge as a potential feedstock for biodiesel production from wastewater treatment plants. Waste Manag. 47: 91–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ho Yeom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supaporn, P., Yeom, S.H. Optimization of a two-step biodiesel production process comprised of lipid extraction from blended sewage sludge and subsequent lipid transesterification. Biotechnol Bioproc E 21, 551–560 (2016). https://doi.org/10.1007/s12257-016-0188-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0188-3

Keywords

Navigation