Skip to main content
Log in

Tamarind kernel powder co-induces xylanase and cellulase production during submerged fermentation of Termitomyces clypeatus

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Tamarind kernel powder (TKP), a soluble agro-residue, was used to examine the production of both cellulolytic and xylanolytic enzymes in a submerged culture of Termitomyces clypeatus, an edible mushroom. Soluble TKP containing xyloglucan as the major polysaccharide induced all cellulolytic and xylanolytic enzymes, and enzyme production increased up to 3% (w/v) TKP with culture filtrate consisting of xylanase and CMCase at a ratio of 4: 1 app. Strong catabolic repression of enzyme production was also observed with the soluble substrate, although fed-batch addition of soluble substrate at late growth phase modified the enzyme kinetics by improving the yield by 30%. The results indicate that inducers were possibly released from TKP by cellulose and xylan fractions of the lignocellulosic polymer. Therefore, the present study reports the successful economic utilization of TKP, an abundantly available soluble agro-residue, for the production of both cellulolytic and xylanolytic enzymes in a single fermentation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Damaso, C. T. M., M. M. C. A. Carolinam, and N. J. Pereira (2000) Use of corncob for endo-xylanase production by thermophilic fungus Thermomyces lanuginosus IOC-4145. Appl. Biochem. Biotechnol. 84: 821–834.

    Article  Google Scholar 

  2. Shin, C. S., J. P. Lee, J. S. Lee, and S. C. Park (2000) Enzyme production of Trichoderma ressei Rut C-30 on various lignocellulosic substrates. Appl. Biochem. Biotechnol. 84: 237–245.

    Article  Google Scholar 

  3. Purkarthofer, H., M. Sinner, and W. Steiner (1993) Cellulase free xylanase from Thermomyces lanuginosus: Optimization of production in submerged and solid state culture. Enz. Microbiol. Technol. 15: 677–682.

    Article  CAS  Google Scholar 

  4. Sivori, A. S., O. A. Mercuri, and F. Farchiassin (1996) Kinetics of xylanase and cellulase production by Ascobolous gamundii (Fungi- Ascomycotina). Rev. Argent. Microbiol. 28: 9–15.

    CAS  Google Scholar 

  5. Gasper, A., T. Cosson, C. Roques, and P. Thronant (1997) Study on the production of a xylanolytic complex from Penicillum canescens 10-10c. Appl. Biochem. Biotechnol. 67: 45–58.

    Article  Google Scholar 

  6. Srivastava, H. C. and P. P. Singh (1967) Structure of the polysaccharide from tamarind kernal. Carbohydr. Res. 4: 326–342.

    Article  CAS  Google Scholar 

  7. Gidley, M. J., P. S. Lillford, D. W. Rowlands, P. Lang, M. Dentini, V. Crescenzi, S. M. Edward, C. Fanutti, and J. S. G. Reid (1991) Structure and solution properties of tamarind seed polysaccharides. Carbhydr. Res. 214: 299–314.

    Article  CAS  Google Scholar 

  8. Marathe, R. M., U. S. Annapure, R. S. Singhal, and P. R. Kulkarni (2002) Gelling behaviour of polyose from tamarind kernel polysaccharides. Food Hydrocolloid 16: 423–426.

    Article  CAS  Google Scholar 

  9. Ghosh, A. K., M. L. Jana, A. K. Naskar, R. Chatterjee, and S. Sengupta (2002) Removal of carboxymethyl cellulase activity from the culture filtrate of Termitomyces clypeatus producing xylanase. Biotechnol. Lett. 24: 1249–1252.

    Article  CAS  Google Scholar 

  10. Sengupta, S., M. L. Jana, D. Sengupta, and A. K. Naskar (2000) A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent. Appl. Microbiol. Biotechnol. 53: 732–735.

    Article  CAS  Google Scholar 

  11. Saha, R., S. Burman Roy, and S. Sengupta (2003) Stabilization and improvement of catalytic activity of a low molar mass cellobiase by cellobiase-sucrase aggregation in the culture filtrate of Termitomyces clypeatus. Biotechnol. Prog. 18: 1240–1248.

    Article  Google Scholar 

  12. Sinha, N. and S. Sengupta (1995) Simultaneous production of α-arabinofuranosidase and xylanase by Termitomyces clypeatus. World J. Microbiol. Biotechnol. 11: 359–360.

    Article  CAS  Google Scholar 

  13. Mandels, M., R. Andreotti, and C. Roche (1975) Measurement of saccharifying cellulase. Biotechnol. Bioeng. 6: 21–33.

    Google Scholar 

  14. Ashwell, G. (1957) Estimation of total carbohydrate in solution in suspension or in whole cell or tissue by anthrone reagent. pp. 73. In: S. P. Colock, and N.O. Kaplan (eds) Methods in Enzymology, vol 3, Academic Press, NY.

    Chapter  Google Scholar 

  15. Hrmova, M., P. Biely, and M. Vrsanska (1986) Specificity of cellulase and β-xylanase induction in Trichoderma ressei QM9414. Arch. Microbiol. 144: 307–311.

    Article  CAS  Google Scholar 

  16. Senior, D. J., P. R. Mayers, and J. N. Saddler (1989) Production and purification of xylanases. pp. 641–654. In: N. G. Lewis and M.G. Paice (eds.). Biogenesis and Biodegradation of Plant Cell Wall Polymers. American Chemical Society, Washington DC, USA.

    Chapter  Google Scholar 

  17. Hrmova, M., P. Biely, and M. Vrsanska (1989) Cellulose- and xylan-degrading enzymes of Aspergillus terreus and Aspergillus niger. Enz. Microbiol. Technol. 11: 610–616.

    Article  CAS  Google Scholar 

  18. Mishra, C., S. Keskar, and M. Rao (1984) Production and properties of extracellular endoxylanase from Neurospora crassa. Appl. Env. Microbiol. 48: 224–228.

    CAS  Google Scholar 

  19. Haltrich, D., B. Sebesta, and W. Steiner (1995) Induction of xylanase and cellulase in Schizophyllum commune. pp. 305–318. In: J. N. Saddler and M. H. Penner (eds.). Enzymatic Degradation of Insoluble Carbohydrates. ACS Symposium, Series 618, American Chemical Society, Washington DC, USA.

    Chapter  Google Scholar 

  20. Brown, J. A., S. A. Collin, and T. M. Wood (1997) Development of a medium for high cellulase, xylanase and β-glucosidase production by a mutant strain (NTG III/6) of the cellulolytic fungus Penicillum pinophilum. Enz. Microbiol. Technol. 9: 355–360.

    Article  Google Scholar 

  21. Meng, M., J. Mukherjee, and T. Scheper (2001) Application of oxygen vectors to Claviceps purpurea cultivation. Appl. Microbiol. Biotechnol. 55: 411–416.

    Article  Google Scholar 

  22. Gomes, D. J., J. Gomes, and W. Steiner (1994) Production of highly thermostable xylanase by a wild strain of thermophilic fungus Thermoascus aurantiacus and partial characterization of the enzyme. J. Biotechnol. 37: 11–22.

    Article  CAS  Google Scholar 

  23. Teunissen, M. J., G. V. M. de Kort, H. J. M. Opden Camp, and J. H. J. Huis in t’ Veld (1992) Production of cellulolytic and xylanolytic enzymes during growth of the anaerobic fungus Piromyces sp. on different substrates. J. Gen. Microbiol. 138: 1657–1664.

    CAS  Google Scholar 

  24. Warzywoda, M., V. Ferre, and J. Pourquie (1983) Development of a culture medium for large-scale production of cellulolytic enzymes by Trichoderma reesei. Biotechnol. Bioeng. 25: 3005–3010.

    Article  CAS  Google Scholar 

  25. Saddler, J. N., C. M. Hogan, and G. Louis-Seize (1985) A comparison between the celluase systems of Trichoderma hazianum E58 and Trichoderma ressei C30. Appl. Microbiol. Biotechnol. 22: 139–145.

    Article  CAS  Google Scholar 

  26. Pardo, A.G., M. Obertello, and F. Forchiassin (2000) Cellulose and xylan degrading enzymes in Thecotheus pellelier. Rev. Argent. Microbiol. 32: 190–195.

    CAS  Google Scholar 

  27. Haltrich, D. and W. Steiner (1994) Formation of xylanase by Schizophyllum commun: Effect of medium components. Enz. Microbiol. Technol. 16: 229–235.

    Article  CAS  Google Scholar 

  28. Pinaga, F., M. T. Fernandez-Espinar, S. Valles, and D. Ramon (1994) Xylanase production in Aspergillus nidulans: Induction and carbon catabolite repression. FEMS Microbiol. Lett. 115: 319–324.

    Article  CAS  Google Scholar 

  29. Bailey, M. J. and L. Viikari (1993) Production of xylanases by Aspergillus fumigatus and Aspergillus oryzae on xylan based media. World J. Microbiol. Biotechnol. 9: 80–84.

    Article  CAS  Google Scholar 

  30. Ghosh, M. and G. Nanda (1994) Physiological studies on xylose induction and glucose repression of xylanolytic enzymes in Aspergillus sydowii MG 49. FEMS Microbiol. Lett. 117: 151–156.

    Article  CAS  Google Scholar 

  31. Sabu, A., A. Pandey, M. Jaafor Daud, and G. Szakacs (2005) Tamarind seed powder and palm kernel cake: Two novel agro residues for the production of tannase under solid state fermentation of Aspergillus niger ATCC 16620. Bioresour. Technol. 96: 1223–1228.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Majumder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, R., Majumder, K. & Sengupta, S. Tamarind kernel powder co-induces xylanase and cellulase production during submerged fermentation of Termitomyces clypeatus . Biotechnol Bioproc E 15, 854–861 (2010). https://doi.org/10.1007/s12257-009-3042-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-3042-z

Keywords

Navigation