Skip to main content

Advertisement

Log in

Do Spartina maritima Plantations Enhance the Macroinvertebrate Community in European Salt Marshes?

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Ecological restoration of salt marshes using plantations may enhance the macroinvertebrate community, but little is known about the development of benthic macroinvertebrates after ecological engineering projects in European salt marshes. This study analyzed the environment and the macroinvertebrate community in European salt marshes 3 years after restoration using Spartina maritima plantations in comparison with non-restored and preserved marshes in Odiel Marshes (Southwest Iberian Peninsula). We hypothesized that planting Spartina maritima on intertidal mudflats would increase species richness and diversity (Shannon–Weaver index) of the benthic macroinvertebrate community by increasing environmental heterogeneity, providing feeding resources and improving sediments characteristics. Benthic macrofauna samples (composed mainly of annelids, crustaceans, and mollusks) were sampled in plots of 20 cm × 25 cm to 5 cm depth between +1.8 and +3.0 m above Spanish Hydrographic Zero. Sediment organic matter content, bulk density, pH, and redox potential were the variables that best explained macroinvertebrate distribution. Restored marshes achieved similar diversity and even higher specific richness than preserved marshes, although with differences in species composition. Non-restored marshes showed the lowest diversity. Restored and preserved marshes did not differ in total abundance or biomass of macroinvertebrates, both being higher than in non-restored marshes. The macroinvertebrate communities in preserved and non-restored marshes showed the largest difference in taxa composition, with restored marshes occupying an intermediate position. Salt marsh restoration using S. maritima increased the complexity (ecological diversity and species richness) and abundance of the benthic macroinvertebrate community. Our study offers new information about the role of salt marsh plants in mediating faunal communities via ecological engineering projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida, C., R. Coelho, M. Silva, L. Bentes, P. Monteiro, J. Ribeiro, K. Erzini, and J.M.S. Goncalves. 2008. Use of different intertidal habitats by faunal communities in a temperate coastal lagoon. Estuarine, Coastal and Shelf Science 80: 357–364.

    Article  Google Scholar 

  • Anderson, M.J., R.N. Gorley, and K.R. Clarke. 2008. PERMANOVA+ for PRIMER: Guide to Statistical Methods. Plymouth: PRIMER-E.

    Google Scholar 

  • Armitage, A.R., S.M. Jensen, J.E. Yoon, and R.F. Ambrose. 2007. Wintering shorebird assemblages and behavior in restored tidal wetlands in southern California. Restoration Ecology 15: 139–148.

    Article  Google Scholar 

  • Bakker, J.P., P. Esselink, K.S. Dijkema, W.E. van Duin, and D.J. de Jong. 2002. Restoration of salt marshes in the Netherlands. Hydrobiologia 478: 29–51.

    Article  Google Scholar 

  • Barnes, R.S.K. 1994. A critical appraisal of the application of Guélorget and Perthuisot’s concepts of the paralic ecosystem and confinement to macrotidal Europe. Estuarine, Coastal and Shelf Science 38: 41–48.

    Article  Google Scholar 

  • Beukema, J.J. 1988. An evaluation of the ABC-method (abundance/biomass comparison) as applied to macrozoobenthic communities living on tidal flats in the Dutch Wadden Sea. Marine Biology 99: 425–433.

    Article  Google Scholar 

  • Cardoso, I., J.P. Granadeiro, and H. Cabral. 2008. Benthic prey quantity and quality in the main mudflat feeding areas of the Tagus estuary: implications for birds and fish populations. Ciencias Marinas 34: 283–296.

    Google Scholar 

  • Castellanos, E.M., M.E. Figueroa, and A.J. Davy. 1994. Nucleation and facilitation in salt marsh succession: interactions between Spartina maritima and Arthrocnemum perenne. Journal of Ecology 82: 239–248.

    Article  Google Scholar 

  • Castellanos, E.M., C. Heredia, M.E. Figueroa, and A.J. Davy. 1998. Tiller dynamics of Spartina maritima in successional and non-successional Mediterranean salt marsh. Plant Ecology 137: 213–225.

    Article  Google Scholar 

  • Castillo, J.M., C.J. Luque, E.M. Castellanos, and M.E. Figueroa. 2000. Causes and consequences of salt-marsh erosion in an Atlantic estuary in SW Spain. Journal of Coastal Conservation 6: 89–96.

    Article  Google Scholar 

  • Castillo, J.M., and M.E. Figueroa. 2009. Restoring salt marshes using small cordgrass, Spartina maritima. Restoration Ecology 17: 324–326.

    Article  Google Scholar 

  • Chaouti, A., and A. Bayed. 2006. First record of Alkmaria romijni Horst, 1919 (Polychaeta: Ampharetidae) from the Mediterranean coast (Smir Lagoon, Morocco). Marine Life 16: 15–19.

    Google Scholar 

  • Chen, Z., L. Guo, B. Jin, J. Wu, and G. Zheng. 2009. Effect of the exotic plant Spartina alterniflora on macrobenthos communities in salt marshes of the Yangtze River Estuary, China. Estuarine, Coastal and Shelf Science 82: 265–272.

    Article  Google Scholar 

  • Clarke, K.R. 1990. Comparisons of dominance curves. Journal of Experimental Marine Biology and Ecology 138: 143–157.

    Article  Google Scholar 

  • Clarke, K.R. 1993. Non parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Clarke, K.R., and M. Ainsworth. 1993. A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92: 205–219.

    Article  Google Scholar 

  • Cooper, M.A. 1993. The status of Spartina maritima in Suffolk. Suffolk Naturalists‘ Society Transactions 29: 48–54.

    Google Scholar 

  • Craeymeersch, J.A. 1991. Applicability of the abundance/biomass comparison method to detect pollution effects on intertidal macrobenthic communities. Hydrobiological Bulletin 24: 133–140.

    Article  Google Scholar 

  • Craft, C., and J. Sacco. 2003. Long-term succession of benthic infauna communities on constructed Spartina alterniflora marshes. Marine Ecology Progress Series 257: 45–58.

    Article  Google Scholar 

  • Curado, G., M.E. Figueroa, and J.M. Castillo. 2012. Sediment dynamics in Spartina maritima restored, non-restored and preserved salt marshes. Ecological Engineering 47: 30–35.

    Article  Google Scholar 

  • Curado, G., E. Figueroa, M.I. Sánchez, and J.M. Castillo. 2013. The avian communities in Spartina maritima restored and non-restored salt marshes. Bird Study. In press. doi: 10.1080/00063657.2013.790875

  • Curado, G., A.E. Rubio-Casal, E. Figueroa, and J.M. Castillo. 2014. Plant Zonation in restored, non-restored and preserved Spartina maritima salt marshes. Journal of Coastal Research, In Press

  • D’Antonio, C., and L.A. Meyerson. 2002. Exotic Plant Species as Problems and Solutions in Ecological Restoration: A Synthesis. Restoration Ecology 10: 703–713.

    Article  Google Scholar 

  • Dionne, M., F.T. Short, and D.M. Burdick. 1998. Fish utilization of restored, created, and reference salt-marsh habitat in the Gulf of Maine. In Fish habitat: essential fish habitat and rehabilitation, ed. Benaka, L. 384–404. American Fisheries Society Symposium 22, Bethesda, Maryland

  • Elbaz-Poulichet, F., N.H. Morley, A. Cruzado, Z. Velasquez, E.P. Achterberg, and C.B. Braungardt. 1999. Trace metal and nutrient distribution in an extremely low pH (2.5) river-estuarine system, the Ria of Huelva (South-West Spain). Science of the Total Environment 227: 73–83.

    Article  CAS  Google Scholar 

  • Fell, P.E., K.A. Murphy, M.A. Peck, and M.L. Recchia. 1991. Reestablishment of Melampus-bidentatus (Say) and other macroinvertebrates on a restored impounded tidal marsh - comparison of populations above and below the impoundment dike. Journal of Experimental Marine Biology and Ecology 152: 33–48.

    Article  Google Scholar 

  • Ferguson, H.J., and C.F. Rakocinski. 2008. Tracking marsh restoration using macrobenthic metrics: implementing a functional approach. Wetland Ecology and Management 16: 277–289.

    Article  Google Scholar 

  • Ferreira, S.M., M.A. Pardal, A.I. Lillebø, P.G. Cardoso, and J.C. Marques. 2004. Population dynamics of Cyathura carinata (Isopoda) in a eutrophic temperate estuary. Estuarine, Coastal and Shelf Science 61: 669–677.

    Article  Google Scholar 

  • Figueroa, M.E., J.M. Castillo, S. Redondo, T. Luque, E.M. Castellanos, F.J. Nieva, C.J. Luque, A.E. Rubio-Casal, and A.J. Davy. 2003. Facilitated invasion by hybridization of Sarcocornia species in a salt-marsh succession. Journal of Ecology 91: 616–626.

    Article  Google Scholar 

  • Finogenova, N.P. 1996. Oligochaete communities at the mouth of the Neva and their relationship to anthropogenic impact. Hydrobiologia 334: 185–191.

    Article  Google Scholar 

  • Gallego-Fernández, J.B., and F. García-Novo. 2007. High-intensity versus low-intensity restoration alternatives of a tidal marsh in Guadalquivir estuary, SW Spain. Ecological Engineering 30: 112–121.

    Article  Google Scholar 

  • Gardner, P.A., and M.L.H. Thomas. 1987. Growth, mortality and production of organic matter by a rocky intertidal population of Mytilus edulis in the Quoddy Region of the Bay of Fundy. Marine Ecology Progress Series 39: 31–36.

    Article  Google Scholar 

  • Gedan, K.B., B.R. Silliman, and M.D. Bertness. 2009. Centuries of Human-Driven Change in Salt Marsh Ecosystems. Annual Review of Marine Science 1: 117–141.

    Article  Google Scholar 

  • Havens, K.J., L.M. Varnell, and J.G. Bradshaw. 1995. An assessment of ecological conditions in a constructed tidal marsh and two natural reference tidal marshes in coastal Virginia. Ecological Engineering 4: 117–141.

    Article  Google Scholar 

  • INE, 2009. Instituto Nacional de Estadística, España. http://www.ine.es. Accessed 02 May 2010

  • Konisky, R.A., D.M. Burdick, M. Dionne, and H.A. Neckles. 2006. A regional assessment of salt marsh restoration and monitoring in the Gulf of Maine. Restoration Ecology 14: 516–525.

    Article  Google Scholar 

  • Levin, L.A., D. Talley, and G. Thayer. 1996. Succession of macrobenthos in a created salt marsh. Marine Ecology Progress Series 141: 67–82.

    Article  Google Scholar 

  • Levin, L.A., and T. Talley. 2000. Influences of vegetation and abiotic environmental factors on salt marsh benthos. In Concepts and controversies in tidal marsh ecology, ed. Weinstein, M.P. and D.A. Kreeger.661-708. Kluwer Academic Publishers, Amsterdam, Netherlands

  • Levin, L.A., and T.S. Talley. 2002. Natural and manipulated sources of heterogeneity controlling early faunal development of a salt marsh. Ecological Applications 12: 1785–1802.

    Article  Google Scholar 

  • Levin, L.A., C. Neira, and E.D. Grosholz. 2006. Invasive cordgrass modifies wetland trophic function. Ecology 87: 419–432.

    Article  Google Scholar 

  • López-González, N., J. Borrego, B. Carro, and O. Lozano-Soria. 2005. Bioavailability of Fe and heavy metals in sediments from the Ria of Huelva (South-Western Spain). Geogaceta 37: 219–222.

    Google Scholar 

  • Marques, J.C., I. Martins, C. Teles-Ferreira, and C. Cruz. 1994. Population dynamics, life history, and production of Cyathura carinata (Krøyer) (Isopoda: Anthuridae) in the Mondego estuary, Portugal. Journal of Crustacean Biology 14: 258–272.

    Article  Google Scholar 

  • Mitsch, W.J. 2010. Conservation, restoration and creation of wetlands: a global perspective. In Ecological Restoration: A Global Challenge, ed. Comín, F.A, 175–187. Cambridge: Cambridge University Press.

    Google Scholar 

  • Netto, S.A., and P.C. Lana. 1997. Intertidal zonation of benthic macrofauna in a subtropical salt marsh and nearby unvegetated flat (SE, Brazil). Hydrobiologia 353: 171–180.

    Article  Google Scholar 

  • Pagola-Carte, S., J. Urkiaga-Alberdi, M. Bustamante, and J.I. Saiz-Salinas. 2002. Concordance degrees in macrozoobenthic monitoring programmes using different sampling methods and taxonomic resolution levels. Marine Pollution Bulletin 44: 63–70.

    Article  CAS  Google Scholar 

  • Paramor, O.A.L., and R.G. Hughes. 2007. Restriction of Spartina anglica (C.E. Hubbard) marsh development by the infaunal polychaete Nereis diversicolor (O.F. Müller). Estuarine. Coastal and Shelf Science 71: 202–209.

    Article  Google Scholar 

  • Peck, M.A., P.E. Fell, E.A. Allen, J.A. Gieg, C.R. Guthke, and M.D. Newkirk. 1994. Evaluation of tidal marsh restoration comparison of selected macroinvertebrate populations on a restored impounded valley marsh and an unimpounded valley marsh within the same salt marsh system in Connecticut, USA. Environmental Management 18: 283–293.

    Article  Google Scholar 

  • Pozo, J., and R. Colino. 1992. Decomposition processes of Spartina maritima in a salt marsh of the Basque Country. Hydrobiologia 231: 165–175.

    Article  CAS  Google Scholar 

  • Queiroga, H. 1990. Corophium multisetosum (Amphipoda: Corophiidae) in Canal de Mira, Portugal: Some factors that affect its distribution. Marine Biology 104: 397–402.

    Article  Google Scholar 

  • Ranwell, D.S., E.C.F. Bird, J.C.R. Hubbard, and R.E. Stebbings. 1964. Spartina salt marshes in Southern England, V. Tidal submergence and chlorinity in Poole Harbour. Journal of Ecology 52: 627–641.

    Article  Google Scholar 

  • Ranwell, D.S. 1967. World resources of Spartina townsendii (sensu lato) and economic use of Spartina marshland. Journal of Applied Ecology 4: 239–256.

    Article  Google Scholar 

  • Rodney, W.S., and K.T. Paynter. 2006. Comparisons of macrofaunal assemblages on restored and non-restored oyster reefs in mesohaline regions of Chesapeake Bay in Maryland. Journal of Experimental Marine Biology and Ecology 335: 39–51.

    Article  Google Scholar 

  • Sacco, J.N., E.D. Seneca, and T.R. Wentworth. 1994. Infaunal community development of artificially established salt marshes in North Carolina. Estuaries 17: 489–500.

    Article  Google Scholar 

  • Salgado, J.P., H.N. Cabral, and M.J. Costa. 2007. Spatial and temporal distribution patterns of the macrozoobenthos assemblage in the salt marshes of Tejo estuary (Portugal). Hydrobiologia 587: 225–239.

    Article  Google Scholar 

  • Sánchez-Moyano, J.E., and I. García-Asencio. 2010. Crustacean assemblages in a polluted estuary from South-Western Spain. Marine Pollution Bulletin 60: 1890–1897.

    Article  Google Scholar 

  • Sánchez-Moyano, J.E., I. García-Asencio, and J.C. García-Gómez. 2010. Spatial and temporal variation of the benthic macrofauna in a grossly polluted estuary from southwestern Spain. Helgoland Marine Research 64: 155–168.

    Article  Google Scholar 

  • Sarda, R., K. Foreman, and I. Valiela. 1995. Macrofauna of a southern New England salt marsh: seasonal dynamics and production. Marine Biology 121: 431–445.

    Article  Google Scholar 

  • Shannon, C.E., and W. Weaver. 1949. A Mathematical Model of Communication. Urbana, IL, EEUU: University of Illinois Press.

    Google Scholar 

  • Silliman, B. R., E.D., Grosholz, and M.D. Bertness. 2009. Human impacts on salt marshes: a global perspective. University of California Press

  • Simpson, E.H. 1949. Measurement of Diversity. Nature 163: 688.

    Article  Google Scholar 

  • Spruzen, F.L., A.M.M. Richardson, and E.J. Woehler. 2008. Spatial variation of intertidal macroinvertebrates and environmental variables in Robbins Passage wetlands, NW Tasmania. Hydrobiologia 598: 325–342.

    Article  Google Scholar 

  • Swamy, V., P.E. Fell, M. Body, M.B. Keaney, M.C. Nyaku, E.C. Mcilvain, and A.L. Keen. 2002. Macroinvertebrate and fish populations in a restored impounded salt marsh 21 years after the reestablishment of tidal flooding. Environmental Management 29: 516–530.

    Article  Google Scholar 

  • Tang, M., and E. Kristensen. 2010. Associations between macrobenthos and invasive cordgrass, Spartina anglica, in the Danish Wadden Sea. Helgoland Marine Research 64: 321–329.

    Article  Google Scholar 

  • Tavares, P.C., D. Alves, and M. Shapouri. 2009. Structural Changes in Macroinvertebrate Communities Associated with Reduction in the Management of Coastal Saltpans. Journal of Marine Biology. doi:10.1155/2009/629310.

    Google Scholar 

  • Teal, J.M., and W. Wieser. 1966. The distribution and ecology of nematodes in a Georgia salt-marsh. Limnology and Oceanography 11: 217–222.

    Article  Google Scholar 

  • Verhoeven, A.G. 1938. Fixation des terres alluviales, 101–137. Zeeland: Congrès International Géographie. Amsterdam. Excursion A.

    Google Scholar 

  • Warren, L. M. 1977. The ecology of Capitella capitata in British waters. Journal of the Marine Biological Association of the United Kingdom 57: 151–159.

    Google Scholar 

  • Warren, R.S., P.E. Fell, R. Rozsa, A.H. Brawley, A.C. Orsted, E.T. Olson, V. Swamy, and W.A. Niering. 2002. Salt Marsh Restoration in Connecticut: 20 Years of Science and Management. Restoration Ecology 10: 497–513.

    Article  Google Scholar 

  • Warwick, R.M. 1986. A new method for detecting pollution effects on marine macrobenthic communities. Marine Biology 92: 557–562.

    Article  Google Scholar 

  • Warwick, R.M., T.H. Pearson, and S. Ruswahyuni. 1987. Detection of pollution effects on marine macrobenthos: further evaluation of the species abundance/biomass method. Marine Biology 95: 193–200.

    Article  Google Scholar 

  • Zhou, H.-X., J.-e. Liu, and P. Qin. 2009. Impacts of an alien species (Spartina alterniflora) on the macrobenthos community of Jiangsu coastal inter-tidal ecosystem. Ecological Engineering 35: 521–528.

    Article  Google Scholar 

  • Zedler, J.B., and R. Lindig-Cisneros. 2002. Functional equivalency of restored and natural salt marshes. In Concepts and controversies in tidal marsh ecology, ed. Weinstein, M., and D. Kreeger, 565–582. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Zedler, J.B., and S. Kercher. 2005. Wetland resources: Status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources 30: 39–74.

    Article  Google Scholar 

  • Zedler, J.B., and J.M. West. 2008. Declining diversity in natural and restored salt marshes: A 30-year study of Tijuana Estuary. Restoration Ecology 16: 249–262.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Port Authority of Huelva for their sponsorship, the Directorate of the Odiel Salt Marshes Natural Park for collaboration, Proof-Reading-Service.com for the language editing, and all students and friends for helping in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús M. Castillo.

Additional information

Communicated by Alf Norkko

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curado, G., Sánchez-Moyano, J.E., Figueroa, E. et al. Do Spartina maritima Plantations Enhance the Macroinvertebrate Community in European Salt Marshes?. Estuaries and Coasts 37, 589–601 (2014). https://doi.org/10.1007/s12237-013-9713-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-013-9713-1

Keywords

Navigation