Skip to main content

Advertisement

Log in

Tidal Freshwater Wetlands: Variation and Changes

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Tidal freshwater wetlands (TFW) are situated in the upper estuary in a zone bordered upstream by the nontidal river and downstream by the oligohaline region. Here, discharge of freshwater from the river and the daily tidal pulse from the sea combine to create conditions where TFW develop. TFW are often located where human population density is high, which has led to wetland degradation or destruction. Globally, TFW are largely restricted to the temperate zone where the magnitude of annual river discharge prevents saline waters from penetrating too far inland. The constant input of river water delivers high loads of sediments, dissolved nutrients, and other suspended matter leading to high sedimentation rates and high nutrient levels. Prominent biogeochemical processes include the transformation of nitrogen by bacteria and immobilization of phosphate. A diverse, characteristic vegetation community develops which supports a rich fauna. Biotic diversity is highest in the high marsh areas and decreases in the lower levels where tidal inundation is greatest. Benthic fauna is rather poor in diversity but high in biomass compared to other regions of the estuary. Global climate change is a threat for this system directly by sea level rise, which will cause brackish water to intrude into the fresh system, and indirectly during droughts, which reduce river discharge. Salinity will affect the presence of flora and fauna and facilitates sulfate reduction of organic matter in the soil. Increased decomposition of organic matter following saltwater intrusion can result in a lowering of wetland surface elevation. The papers assembled in this issue focus on how these tidal freshwater wetlands have changed over recent time and how they may respond to new impacts in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alberts, J.J., and M. Takács. 1999. Importance of humic substances for carbon and nitrogen transport into southeastern United States estuaries. Organic Geochemistry 30: 385–395.

    Article  CAS  Google Scholar 

  • Arrigoni, A., S. Findlay, D. Fischer, and K. Tockner. 2008. Predicting carbon and nutrient transformations in tidal freshwater wetlands of the Hudson River. Ecosystems 11: 790–802.

    Article  CAS  Google Scholar 

  • Attrill, M.J. 2002. A testable linear model for diversity trends in estuaries. Journal of Animal Ecology 71: 262–269.

    Article  Google Scholar 

  • Baldwin, A.H. 2004. Restoring complex vegetation in urban settings: the case of tidal freshwater marshes. Urban Ecosystems 8: 125–137.

    Article  Google Scholar 

  • Baldwin, A.H. 2007. Vegetation and seed bank studies of salt-pulsed swamps of the Nanticoke River, Chesapeake Bay. In Ecology of tidal freshwater forested wetlands of the Southeastern United States, ed. W.H. Conner, T.W. Doyle, and K.W. Krauss, 139–160. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Baldwin, A.H., M.S. Egnotovich, and E. Clarke. 2001. Hydrologic change and vegetation of tidal freshwater marshes: field, greenhouse, and seed bank experiments. Wetlands 21: 519–531.

    Article  Google Scholar 

  • Baldwin, A.H., A. Barendregt, and D.F. Whigham. 2009. Tidal freshwater wetlands—an introduction to the ecosystem. In Tidal freshwater wetlands, ed. A. Barendregt, D.F. Whigham, and A.H. Baldwin, 1–10. Leiden, the Netherlands: Backhuys.

    Google Scholar 

  • Barendregt, A. 2005. The impact of flooding regime on ecosystems in a freshwater tidal area. Eco-hydrology and Hydrobiology 5: 95–102.

    Google Scholar 

  • Barendregt, A., D. Whigham, P. Meire, A. Baldwin, and S. Van Damme. 2006. Wetlands in the tidal freshwater zone. In Wetlands: function, biodiversity, conservation, restoration; Ecological studies, vol. 191, ed. R. Bobbink, B. Beltman, J.T.A. Verhoeven, and D.F. Whigham, 117–148. Berlin: Springer.

    Chapter  Google Scholar 

  • Barendregt, A., D.F. Whigham, and A.H. Baldwin (eds.). 2009a. Tidal freshwater wetlands. Leiden: Backhuys.

    Google Scholar 

  • Barendregt, A., T. Ysebaert, and W.J. Wolff. 2009b. Animal communities in European tidal freshwater wetlands. In Tidal freshwater wetlands, eds. Barendregt et al., 89–104.

  • Barendregt, A., P. Glöer, and F. Saris. 2009c. Ecological consequences of a change in tidal amplitude in tidal freshwater wetlands. In Tidal freshwater wetlands, eds. Barendregt et al., 185–196.

  • Bedford, B.L., M.R. Walbridge, and A. Aldous. 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80: 2151–2169.

    Article  Google Scholar 

  • Conner, W.H., T.W. Doyle, and K.W. Krauss. 2007. Ecology of Tidal freshwater forested wetlands of the Southeastern United States. The Netherlands: Springer.

    Google Scholar 

  • Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Gasso, B. Hannon, K. Limburg, S. Naeem, R.V. O’Neill, J. Paruelo, R.G. Raskin, P. Sutton, and M. Van den Belt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.

    Article  CAS  Google Scholar 

  • Craft, C. 2007. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnology and Oceanography 52: 1220–1230.

    Article  CAS  Google Scholar 

  • Craft, C., J. Clough, J. Ehman, S. Joye, R. Park, S. Pennings, S. Guo, and M. Machmuller. 2009. Forecasting the effects of accelerated sea level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 7: 73–78.

    Article  Google Scholar 

  • Crain, C.M. 2007. Shifting nutrient limitation and eutrophication effects in marsh vegetation across estuarine salinity gradients. Estuaries and Coasts 30: 26–34.

    CAS  Google Scholar 

  • Crain, C.M., B.R. Silliman, S.L. Bertness, and M.D. Bertness. 2004. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology 85: 2539–2549.

    Article  Google Scholar 

  • Dame, R., M. Alber, D. Allen, M. Mallin, C. Montargue, A. Lewitus, A. Chalmers, R. Gardner, C. Gilman, B. Kjerfve, J. Pickney, and N. Smith. 2000. Estuaries of the south Atlantic coast of North America: their geographical signatures. Estuaries 23: 793–819.

    Article  CAS  Google Scholar 

  • Darke, A.K., and J.P. Megonigal. 2003. Control of sediment deposition rates in two mid-Atlantic Coast tidal freshwater wetlands. Estuarine, Coastal and Shelf Science 57: 255–268.

    Article  Google Scholar 

  • Davidson, N.C., D. d’A Laffoley, J.P. Doody, L.S. Way, J. Gordon, R. Key, C.M. Drake, M.W. Pienkowski, R. Mitchell, and K.L. Duff. 1991. Nature conservation and estuaries of Great Britain. Nature Conservancy Council, Peterborough, UK.

  • Dent Jr., R.J. 1995. Chesapeake prehistory: old traditions, new directions. New York: Plenum Press.

    Google Scholar 

  • Dynesius, M., and C. Nilsson. 1994. Fragmentation and flow regulation of river systems in the northern third of the world. Science 266: 753–762.

    Article  CAS  Google Scholar 

  • Eckard, R.S., P.J. Hernes, B.A. Bergamaschi, R. Stepanauskas, and C. Kendall. 2007. Landscape scale controls on the vascular plant component of dissolved organic carbon across a freshwater delta. Geochimica et Cosmochimica Acta 71: 5968–5984.

    Article  CAS  Google Scholar 

  • Edmiston, H.L., S.A. Fahrny, M.S. Lamb, L.K. Levi, J.M. Wanat, J.S. Avant, K. Wren, and N.C. Selly. 2008. Tropical storm and hurricane impacts on a Gulf Coast estuary: Apalachicola Bay, Florida. Journal of Coastal Research 55(SI): 38–49.

    Article  Google Scholar 

  • Eisma, D. 1986. Flocculation and de-flocculation of suspended matter in estuaries. Netherlands Journal of Sea Research 20: 183–199.

    Article  Google Scholar 

  • Elliott, M., and D.S. McLusky. 2002. The need for definitions in understanding estuaries. Estuarine, Coastal and Shelf Science 55: 815–827.

    Article  Google Scholar 

  • Emmett, R., R. Llanso, J. Newton, R. Thom, M. Hornberger, C. Morgan, C. Levings, A. Copping, and P. Fishman. 2000. Geographic signatures of North American West Coast estuaries. Estuaries 23: 765–792.

    Article  CAS  Google Scholar 

  • Ensign, S.H., M.F. Piehler, and M.W. Doyle. 2008. Riparian zone denitrification affects nitrogen flux through a tidal freshwater river. Biogeochemistry 91: 133–150.

    Article  CAS  Google Scholar 

  • Erkens, G. 2010. Sediment dynamics in the Rhine catchment. PhD Thesis Utrecht. Netherlands Geographical Studies 388.

  • Fain, A.M.V., D.A. Jay, D.J. Wilson, P.M. Orton, and A.M. Baptista. 2001. Seasonal and tidal monthly patterns of particulate matter dynamics in the Columbia River estuary. Estuaries 24: 770–786.

    Article  CAS  Google Scholar 

  • Fairbridge, R.W. 1980. The estuary: its definition and geochemical role. In Chemistry and geochemistry of estuaries, ed. E. Olausson and I. Cato, 1–35. New York: Wiley.

    Google Scholar 

  • Field, R.T., and K.R. Philipp. 2000. Vegetation changes in the freshwater tidal marsh of the Delaware estuary. Wetlands Ecology and Management 8: 79–88.

    Article  Google Scholar 

  • Findlay, S.E.G., C. Wigand, and W.C. Nieder. 2006. Submersed macrophyte distribution and function in the tidal freshwater Hudson River. In The Hudson River estuary, ed. J.S. Levinton and J.R. Waldman, 230–241. New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Fletcher II, C.H., J.E. van der Pelt, G.S. Brush, and J. Sherman. 1993. Tidal wetland record of Holocene sea-level movements and climate history. Palaeography, Palaeoclimatology, Paleaoecology 102: 177–213.

    Article  Google Scholar 

  • Frost, J.W., T. Schleicher, and C. Craft. 2009. Effects of nitrogen and phosphorus additions on primary production and invertebrate densities in a Georgia (USA) tidal freshwater marsh. Wetlands 29: 196–203.

    Article  Google Scholar 

  • Good, R.E., D.F. Whigham, and R.L. Simpson (eds.). 1978. Freshwater wetlands, ecological processes and management potential. New York: Academic.

    Google Scholar 

  • Grabemann, I., and G. Krause. 2001. On different time scales of suspended matter dynamics in the Weser estuary. Estuaries 24: 688–698.

    Article  CAS  Google Scholar 

  • Greene, S. 2005. Nutrient removal by tidal fresh and oligohaline marshes in a Chesapeake Bay tributary. Master's thesis. Chesapeake Biological Lab, University of Maryland, College Park, Maryland

  • Hall, J. V. 2009. Tidal freshwater wetlands of Alaska. In Tidal freshwater wetlands, eds. Barendregt et al., 179–184.

  • Heip, C., N.K. Goosen, P.M.J. Herman, J. Kromkamp, J.J. Middelburg, and K. Soetaert. 1995. Production and consumption of biological particles in temperate tidal estuaries. Oceanography and Marine Biology: An Annual Review 33: 1–149.

    Google Scholar 

  • Hopfensperger, K.N., and K.A.M. Engelhardt. 2008. Annual species abundance in a tidal freshwater marsh: germination and survival across an elevational gradient. Wetlands 28: 521–526.

    Article  Google Scholar 

  • Hopfensperger, K.N., S.S. Kaushal, S.E.G. Findlay, and J.C. Cornwell. 2009. Influence of plant communities on denitrification in a tidal freshwater marsh of the Potomac River, United States. Journal of Environmental Quality 38: 618–626.

    Article  CAS  Google Scholar 

  • Howard, R.J., and I.A. Mendelssohn. 2000. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses. Aquatic Botany 68: 143–164.

    Article  Google Scholar 

  • Kandus, P., and A.I. Malvárez. 2004. Vegetation patterns and change analysis in the Lower Delta Islands of the Paraná River (Argentina). Wetlands 24: 620–632.

    Article  Google Scholar 

  • Kerner, M. 2007. Effects of deepening the Elbe Estuary on sediment regime and water quality. Estuarine, Coastal and Shelf Science 75: 492–500.

    Article  Google Scholar 

  • Kerr, J.L., D.S. Baldwin, and K.L. Whitworth. 2013. Options for managing hypoxic blackwater events in river systems: a review. Journal of Environmental Management 114: 139–147.

    Article  CAS  Google Scholar 

  • Ket, W.A., J.P. Schubauer-Berigan, and C.B. Craft. 2011. Effects of five years of nitrogen and phosphorus additions on a Zizaniopsis miliacea tidal freshwater marsh. Aquatic Botany 95: 17–23.

    Article  CAS  Google Scholar 

  • Khan, H., and G.S. Brush. 1994. Nutrient and metal accumulation in a freshwater tidal marsh. Estuaries 17: 345–360.

    Article  CAS  Google Scholar 

  • Kötter, F. 1961. Die Pflanzengesellschaften der Unterelbe. Archiv für Hydrobiologie, Suppl 26: 106–184.

    Google Scholar 

  • Krauss, K.W., J.A. Duberstein, T.W. Doyle, W.H. Conner, R.H. Day, L.W. Inabinette, and J.L. Whitbeck. 2009. Site condition, structure, and growth of bald cypress along tidal/non-tidal salinity gradients. Wetlands 29: 505–519.

    Article  Google Scholar 

  • Laverman, A.M., R.W. Canavan, C.P. Slomp, and P. van Cappellen. 2007. Potential nitrate removal in a coastal freshwater sediment (Haringvliet Lake, The Netherlands) and response to salinization. Water Research 41: 3061–3068.

    Article  CAS  Google Scholar 

  • Leck, M.A. 2003. Seed-bank and vegetation development in a created tidal freshwater wetland on the Delaware River, Trenton, New Jersey, USA. Wetlands 23: 310–343.

    Article  Google Scholar 

  • Leck, M.A., A.H. Baldwin, V.T. Parker, L. Schile, and D.F. Whigham. 2009. Plant communities of tidal freshwater wetlands of the continental USA and southeast Canada. In Tidal freshwater wetlands, eds. Barendregt et al., 41–58.

  • Lehman, P., W. Lehman, S. Mayr, L. Mecum, and C. Enright. 2010. The freshwater tidal wetland Liberty Island, CA was both a source and sink of inorganic and organic material to the San Francisco Estuary. Aquatic Ecology 44: 359–372.

    Article  CAS  Google Scholar 

  • Loomis, M.J., and C.B. Craft. 2011. Carbon sequestration and nutrient (nitrogen, phosphorus) accumulation in river-dominated tidal marshes, Georgia, USA. Soil Science Society of America Journal 74: 1028–1036.

    Article  Google Scholar 

  • Marton, J.M., E.R. Herbert, and C.B. Craft. 2012. Effects of salinity on denitrification and greenhouse gas production from laboratory-incubated tidal forests soils. Wetlands 32: 347–357.

    Article  Google Scholar 

  • McLusky, D.S. 1993. Marine and estuarine gradients—an overview. Netherlands Journal of Aquatic Ecology 27: 489–493.

    Article  Google Scholar 

  • McLusky, D.S., and M. Elliott. 2004. The estuarine ecosystem: ecology, threats and management. Oxford: Oxford University Press.

    Book  Google Scholar 

  • McLusky, D.S., and M. Elliott. 2007. Transitional waters: a new approach, semantics or just muddying the waters? Estuarine, Coastal and Shelf Science 71: 359–363.

    Article  Google Scholar 

  • Meade, R.H. 1972. Transport and deposition of sediments in estuaries. The Geological Society of America-Memoir 133: 91–120.

    Google Scholar 

  • Megonigal, J.P., and S.C. Neubauer. 2009. Biogeochemistry of freshwater tidal wetlands. In Coastal wetlands: an integrated ecosystem approach, ed. G.M.E. Perillo, E. Wolanski, D.R. Cahoon, and M.M. Brinson, 535–563. New York: Elsevier Press.

    Google Scholar 

  • Meire, P., and S. Van Damme (eds). 2005. Special issue: ecological structures and functions in the Scheldt estuary: from past to future. Hydrobiologia 540: 1–278.

    Google Scholar 

  • Meire, P., and M. Vincx (eds). 1993. Marine and estuarine gradients. Netherlands Journal of Aquatic Ecology 27: 41–496.

    Google Scholar 

  • Mitsch, W.J., and J.G. Gosselink. 2007. Wetlands, 4th ed. New York: Wiley.

    Google Scholar 

  • Morse, J.L., J.P. Megonigal, and M.R. Walbridge. 2004. Sediment nutrient accumulation and nutrient availability in two tidal freshwater marshes along the Mattaponi River, Virginia, USA. Biogeochemistry 69: 175–206.

    Article  CAS  Google Scholar 

  • Neff, K.P., and A.H. Baldwin. 2005. Seed dispersal into wetlands: techniques and results for a restored tidal freshwater marsh. Wetlands 25: 392–404.

    Article  Google Scholar 

  • Neubauer, S.C. 2008. Contributions of mineral and organic components to tidal freshwater marsh accretion. Estuarine, Coastal and Shelf Science 78: 78–88.

    Article  Google Scholar 

  • Neubauer, S.C., and C.B. Craft. 2009. Global change and tidal freshwater wetlands: scenarios and impacts. In Tidal freshwater wetlands, eds. Barendregt et al., 253–266.

  • Neubauer, S.C., I.C. Anderson, J.A. Constantine, and S.A. Kuehl. 2002. Sediment deposition and accretion in a Mid-Atlantic (U.S.A.) tidal freshwater marsh. Estuarine, Coastal and Shelf Science 54: 713–727.

    Article  CAS  Google Scholar 

  • Neubauer, S.C., I.C. Anderson, and B.B. Neikirk. 2005. Nitrogen cycling and ecosystem exchanges in a Virginia tidal freshwater marsh. Estuaries 28: 909–922.

    Article  CAS  Google Scholar 

  • Nordstrom, K.F., and C.T. Roman (eds.). 1996. Estuarine shores—evolution, environments and human alterations. Chichester: Wiley.

    Google Scholar 

  • Odum, W.E. 1988. Comparative ecology of tidal freshwater and salt marshes. Annual Review of Ecology and Systematics 19: 147–176.

    Article  Google Scholar 

  • Odum, W.E., T.J. Smith III, J.K. Hoover, and C.C. McIvor. 1984. The ecology of tidal freshwater marshes of the United States east coast: A community profile. Washington DC, U.S. Fish and Wildlife Service, FWS/OBS-83/17.

  • Odum, W.E., E.P. Odum, and H.T. Odum. 1995. Nature’s pulsing paradigm. Estuaries 18: 547–555.

    Article  Google Scholar 

  • Officer, C.B. 1981. Physical dynamics of estuarine suspended sediments. Marine Geology 40: 1–14.

    Article  Google Scholar 

  • Orson, R.A., R.L. Simpson, and R.E. Good. 1990. Rates of sediment accumulation in a tidal freshwater marsh. Journal of Sedimentary Petrology 60: 859–869.

    Google Scholar 

  • Pasternack, G.B. 2009. Hydrogeomorphology and sedimentation in tidal freshwater wetlands. In Tidal Freshwater Wetlands, eds. Barendregt et al., 31–40.

  • Pasternack, G.B., and G.S. Brush. 1998. Sedimentation cycles in a river-mouth tidal freshwater marsh. Estuaries 21: 407–415.

    Google Scholar 

  • Pasternack, G.B., and G.S. Brush. 2001. Seasonal variations in sedimentation and organic content in five plant associations on a Chesapeake Bay tidal freshwater delta. Estuarine, Coastal and Shelf Science 53: 93–106.

    Article  Google Scholar 

  • Pasternack, G.B., G.S. Brush, and W.B. Hilgartner. 2001. Impact of historic land-use change on sediment delivery to an estuarine delta. Earth Surface Processes and Landforms 26: 409–427.

    Article  Google Scholar 

  • Petzelberger, B.E.M. 2000. Coastal development and human activities in NW Germany. In Coastal and estuarine environments: sedimentology, geomorphology and geoarchaeology. Special Publications, vol. 175, ed. K. Pye and J.R.L. Allen, 365–376. London: Geological Society.

    Google Scholar 

  • Pritchard, D.W. 1967. What is an estuary: a physical viewpoint. American Association for the Advancement of Science 83: 3–5.

    Google Scholar 

  • Remane, A. 1934. Die Brackwasserfauna. Zoologischer Anzeiger (Supplement) 7: 34–74.

    Google Scholar 

  • Remane, A., and C. Schlieper. 1971. Biology of brackish water. Stuttgart: E. Schweiserbart’sche.

    Google Scholar 

  • Riedel-Lorjé, J.C., and T. Gaument. 1982. A century of Elbe research—hydrobiological conditions and fish populations from 1842 to 1943 under the influence of construction projects and sewage discharge (in German). Archiv für Hydrobiologie, Suppl 61: 317–376.

    Google Scholar 

  • Roman, C.T., N. Jaworski, F.T. Short, S. Findlay, and R.S. Warren. 2000. Estuaries of the Northeastern United States: habitat and land use signatures. Estuaries 23: 743–764.

    Article  CAS  Google Scholar 

  • Rysgaard, S., P. Thastum, T. Dalsgaard, P.B. Christensen, and N.P. Sloth. 1999. Effect of salinity on NH4 adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries 22: 21–30.

    Article  CAS  Google Scholar 

  • Sasser, C.E., J.M. Visser, D.E. Evers, and J.G. Gosselink. 1995. The role of environmental variables in interannual variation in species composition and biomass in a sub-tropical minerotrophic floating marsh. Canadian Journal of Botany 73: 413–424.

    Article  Google Scholar 

  • Schneider, D.W. 1996. Effects of European settlement and land use on regional patterns of similarity among Chesapeake forests. Bulletin of the Torrey Botanical Club 123: 233–239.

    Article  Google Scholar 

  • Sharpe, P.J., and A.H. Baldwin. 2012. Tidal marsh plant community response to sea-level rise: a mesocosm study. Aquatic Botany 101: 34–40.

    Article  Google Scholar 

  • Simpson, R.L., R.E. Good, M.A. Leck, and D.F. Whigham. 1983. The ecology of freshwater tidal wetlands. BioScience 34: 255–259.

    Article  Google Scholar 

  • Stinchcomb, G.E., T.C. Messner, S.G. Driese, L.C. Nordt, and R.M. Stewart. 2011. Pre-colonial (A.D. 1100–1600) sedimentation related to prehistoric maize agriculture and climate change in eastern North America. Geology 39: 363–366.

    Article  Google Scholar 

  • Struyf, E., S. Jacobs, P. Meire, K. Jensen, and A. Barendregt. 2009. Plant communities of European tidal freshwater wetlands. In Tidal Freshwater Wetlands, eds. Barendregt et al., 59–70.

  • Swarth, C., and D. Peters. 1993. Water quality and nutrient dynamics at Jug Bay on the Patuxent River 1987–1992. Technical Report of the Jug Bay Wetlands Sanctuary.

  • Swarth, C.W., and E. Kiviat. 2009. Animal communities in North American tidal freshwater wetlands. In Tidal Freshwater Wetlands, eds. Barendregt et al., 71–88.

  • Van Damme, S., E. Struyf, T. Maris, T. Ysebaert, F. Dehairs, M. Tackx, C. Heip, and P. Meire. 2005. Spatial and temporal patterns of water quality along the estuarine salinity gradient of the Scheldt estuary (Belgium and The Netherlands): results of an integrated monitoring approach. Hydrobiologia 540: 29–45.

    Article  Google Scholar 

  • Van Damme, S., E. Struyf, T. Maris, T. Cox, and P. Meire. 2009. Characteristic aspects of the tidal freshwater zone that affect aquatic primary production. In Tidal Freshwater Wetlands, eds. Barendregt et al., 123–136.

  • Van de Noort, R. 2004. The humber wetlands, the archaeology of a dynamic landscape. Macclesfield: Windgather.

    Google Scholar 

  • Van den Bergh, E., A. Garniel, R.K.A. Morris, and A. Barendregt. 2009. Conservation of tidal freshwater wetlands in Europe. In Tidal Freshwater Wetlands, eds. Barendregt et al., 241–252.

  • Van Regteren Altena, J.F., J.A. Bakker, A.T. Clason, W. Glasbergen, W. Groenman - van Wateringe, and L.J. Pons. 1962/1963. The Vlaardingen culture. Helinium II 3–35, 97–103, 215–243; III 39–54, 97–120.

  • Verger, F. 2005. Marais Maritimes et Estuaires du Littoral Français. Paris, Berlin.

  • Vermeer, M., and S. Rahmstorf. 2009. Global sea level linked to global temperature. Proceedings of the National Academy of Sciences 106: 21527–21532.

    Article  CAS  Google Scholar 

  • Verney, R., R. Lafite, and J.-C. Brun-Cottan. 2009. Flocculation potential of estuarine particles: the importance of environmental factors and of the spatial and seasonal variability of suspended particulate matter. Estuaries and Coasts 32: 678–693.

    Article  CAS  Google Scholar 

  • Walter, R.C., and D.J. Merrits. 2008. Natural streams and the legacy of water-powered mills. Science 319: 299–304.

    Article  CAS  Google Scholar 

  • Weston, N.B., R.E. Dixon, and S.B. Joye. 2006. Ramifications of increased salinity in tidal freshwater sediments: geochemistry and microbial pathways of organic matter mineralization. Journal of Geophysical Research-Biogeosciences 111(G01009).

  • Weston, N.B., M.A. Vile, S.C. Neubauer, and D.J. Velinsky. 2011. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 102: 135–151.

    Article  CAS  Google Scholar 

  • Whigham, D.F. 2009. Primary production in tidal freshwater wetlands. In Tidal freshwater wetlands, eds. Barendregt et al., 115–122.

  • Wolff, W.J. 1973. The estuary as a habitat—an analysis of the soft-bottom macrofauna of the estuarine area of the rivers Rhine, Meuse, and Scheldt. Zoölogische Verhandelingen, Leiden 126: 1–242.

    Google Scholar 

  • Yozzo, D.J., D.E. Smith, and M.L. Lewis. 1994. Tidal freshwater ecosystems. Bibliography. Virginia Institute of Marine Sciences, Contribution No.1880. Gloucester Point, VA, USA.

  • Ysebaert, T., P. Meire, J. Coosen, and K. Essink. 1998. Zonation of intertidal macrobenthos in the estuaries of Schelde and Ems. Aquatic Ecology 32: 53–71.

    Article  Google Scholar 

  • Ysebaert, T., P.M.J. Herman, P. Meire, J. Craeymeersch, H. Verbeek, and C.H.R. Heip. 2003. Large-scale spatial patterns in estuaries: estuarine macrobenthic communities in the Schelde estuary, NW-Europe. Estuarine, Coastal and Shelf Science 57: 335–355.

    Article  CAS  Google Scholar 

  • Zonneveld, I.S. 1960. The Brabantsche Biesbosch. A study of soil and vegetation of a fresh water tidal delta. PhD Dissertation, Wageningen, NL.

  • Zonneveld, I.S., and A. Barendregt. 2009. Human activities in European tidal freshwater wetlands. In Tidal freshwater wetlands, eds. Barendregt et al., 11–20.

Download references

Acknowledgments

We thank Mary Leck, Carlton Hershner, and Iris Anderson for reviewing earlier drafts of our “Introduction” section and offering many constructive comments. We also thank the following individuals for reviewing the manuscripts in this issue: Carmen Aguilar, Linda Blum, Suzanna Brauer, John C. Callaway, Bob Christian, Robert J. Diaz, Heida Diefenderfer, Stuart Findlay, Marilyn Fogel, Carlton H. Hershner, Cheryl Kelley, Carla Koretsky, Adam Langley, Mary Leck, Shufen Ma, Robin Miller, Gregory Noe, Steven C. Pennings, Michael Piehler, Marty Rabenhorst, Lawrence P. Rozas, Lori Sutter, Christopher Swarzenski, Jenneke Visser, Nathaniel B. Weston, Kimberlyn Williams, Lisamarie Windham-Myers, Joseph Yavitt, and Susan Ziegler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aat Barendregt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barendregt, A., Swarth, C.W. Tidal Freshwater Wetlands: Variation and Changes. Estuaries and Coasts 36, 445–456 (2013). https://doi.org/10.1007/s12237-013-9626-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-013-9626-z

Keywords

Navigation