Skip to main content
Log in

Spatial Variability of Stable Isotope Ratios in Oysters (Crassostrea gigas) and Primary Producers Along an Estuarine Gradient (Bay of Brest, France)

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

This study aimed at characterizing the diet of the oyster Crassostrea gigas along an estuarine gradient in the Bay of Brest (France), through stable isotope (δ13C and δ15N) measurements in primary producers and wild oysters. The contribution of different potential food sources to the diet of C. gigas was estimated at high spatial resolution (over a gradient of 40 km with samplings every 2 km) to identify ecological transition zones and highlighted the dominance of resuspended biofilm in oysters diet. Although the different primary producers did not display any obvious pattern along the estuarine gradient, the stable isotope signatures of C. gigas differed among estuarine, inner Bay, and open sea sites. In particular, a striking 15N depletion pattern was found along the gradient which allowed to identify seven homogeneous groups. Moreover, some unexpected values found at two stations within the estuary revealed localized anthropogenic disturbances. Overall, our results suggest that suspension feeders might be better indicators of ecosystem functioning than primary producers and reflect the different ecological processes occurring along estuarine gradients, including localized anthropogenic inputs. We suggest that the usefulness of suspension feeders as indicators of ecosystem functional typology lies in the dominance of benthic material in their diet, which results in locally occurring processes being reflected in oysters’ stable isotope ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alunno-Bruscia, M., Y. Bourlès, D. Maurer, S. Robert, J. Mazurié, A. Gangnery, P. Goulletquer, and S. Pouvreau. 2011. A single bio-energetics growth and reproduction model for the oyster Crassostrea gigas in six Atlantic ecosystems. Journal of Sea Research 66: 340–348.

    Article  Google Scholar 

  • Antonio, E.S., A. Kasai, M. Ueno, N. Won, Y. Ishihi, H. Yokoyama, and Y. Yamashita. 2010. Spatial variation in organic matter utilization by benthic communities from Yura River-Estuary to offshore of Tango Sea, Japan. Estuarine, Coastal and Shelf Science 86: 107–117.

    Article  CAS  Google Scholar 

  • Barillé, L., J. Prou, M. Héral, and D. Razet. 1997. Effects of high natural seston concentrations on the feeding, selection, and absorption of the oyster Crassostrea gigas (Thunberg). Journal of Experimental Marine Biology and Ecology 212: 149–172.

    Article  Google Scholar 

  • Bretagne environnement. 2009. FICHE DE SYNTHESE - Concentrations en nitrates. www.bretagne-environnement.org/content/…/Rade-Elorn-29.pdf.Accessed 23 May 2012.

  • Chauvaud, L., A. Donval, G. Thouzeau, Y.M. Paulet, and E. Nézan. 2001. Variations in food intake of Pecten maximus (L.) from the Bay of Brest (France): influence of environmental factors and phytoplankton species composition. Life Sciences 324: 743–755.

    CAS  Google Scholar 

  • Coffin, R.B., B. Fry, B.J. Peterson, and R.T. Wright. 1989. Carbon isotopic compositions of estuarine bacteria. Limnology and Oceanography 34: 1305–1310.

    Article  CAS  Google Scholar 

  • Costanzo, S.D., M.J. O’Donohue, W.C. Dennison, N.R. Loneragan, and M. Thomas. 2001. A new approach for detecting and mapping sewage impacts. Marine Pollution Bulletin 42: 149–156.

    Article  CAS  Google Scholar 

  • Currin, C.A., S.Y. Newell, and H.W. Paerl. 1995. The role of standing dead Spartina alterniflora and benthic microalgae in salt-marsh food webs: considerations based on multiple stable isotope analysis. Marine Ecology Progress Series 121: 99–116.

    Article  Google Scholar 

  • Deegan, L.A., and R.H. Garritt. 1997. Evidence for spatial variability in estuarine food webs. Marine ecology progress series Oldendorf 147: 31–47.

    Article  Google Scholar 

  • Dubois, S., B. Jean-Louis, B. Bertrand, and S. Lefebvre. 2007a. Isotope trophic-step fractionation of suspension-feeding species: implications for food partitioning in coastal ecosystems. Journal of Experimental Marine Biology and Ecology 351: 121–128.

    Article  Google Scholar 

  • Dubois, S., F. Orvain, J.C. Marin-Leal, M. Ropert, and S. Lefebvre. 2007b. Small-scale spatial variability of food partitioning between cultivated oysters and associated suspension-feeding species, as revealed by stable isotopes. Marine Ecology Progress Series 336: 151–160.

    Article  CAS  Google Scholar 

  • Fenton, G.E., and D.A. Ritz. 1988. Changes in carbon and hydrogen stable isotope ratios of macroalgae and seagrass during decomposition. Estuarine, Coastal and Shelf Science 26: 429–436.

    Article  CAS  Google Scholar 

  • Fertig, B., T.J.B. Carruthers, W. Dennison, A. Jones, F. Pantus, and B. Longstaff. 2009. Oyster and macroalgae bioindicators detect elevated δ15N in Maryland’s Coastal Bays. Estuaries and Coasts 32: 773–786.

    Article  CAS  Google Scholar 

  • Fertig, B., T.J.B. Carruthers, W.C. Dennison, E.J. Fertig, and M.A. Altabet. 2010. Eastern oyster (Crassostrea virginica) δ15N as a bioindicator of nitrogen sources: observations and modeling. Marine Pollution Bulletin 60: 1288–1298.

    Article  CAS  Google Scholar 

  • Grall, J., L. Chauvaud, G. Thouzeau, S. Fifas, M. Glemarec, and Y.M. Paulet. 1996. Distribution de Pecten maximus (L.) et de ses principaux compétiteurs et prédateurs potentiels en rade de Brest. Comptes rendus de l’Académie des sciences Série 3. Sciences de la vie 319: 931–937.

    Google Scholar 

  • Grall, J., and M. Glémarec. 1997. Using biotic indices to estimate macrobenthic community perturbations in the Bay of Brest. Estuarine, Coastal and Shelf Science 44: 43–53.

    Article  Google Scholar 

  • Grippo, M.A., J.W. Fleeger, N.N. Rabalais, R. Condrey, and K.R. Carman. 2010. Contribution of phytoplankton and benthic microalgae to inner shelf sediments of the north-central Gulf of Mexico. Continental Shelf Research 30: 456–466.

    Article  Google Scholar 

  • Harris, J.K., J.W. Sahl, T.A. Castoe, B.D. Wagner, D.D. Pollock, and J.R. Spear. 2010. Comparison of normalization methods for construction of large, multiplex amplicon pools for next-generation sequencing. Applied and Environmental Microbiology 76: 3863–3868.

    Article  CAS  Google Scholar 

  • Hawkins, S., D. Watson, A. Hill, S. Harding, M. Kyriakides, S. Hutchinson, and T. Norton. 1989. A comparison of feeding mechanisms in microphagous, herbivorous, intertidal, prosobranchs in relation to resource partitioning. Journal of Molluscan Studies 55: 151–165.

    Article  Google Scholar 

  • Hill, J.M., and C.D. McQuaid. 2009. Variability in the fractionation of stable isotopes during degradation of two intertidal red algae. Estuarine, Coastal and Shelf Science 82: 397–405.

    Article  CAS  Google Scholar 

  • Hughes, E.H., and E.B. Sherr. 1983. Subtidal food webs in a georgia estuary: δ13C analysis. Journal of Experimental Marine Biology and Ecology 67: 227–242.

    Article  Google Scholar 

  • IDHESA. 2011. Plage du Passage, commune du Relecq-Kerhuon Finistère, profil des eaux de baignades. In. IDHESA Brest métropole océane, Brest

  • Kang, C., P. Sauriau, P. Richard, and G. Blanchard. 1999. Food sources of the infaunal suspension-feeding bivalve Cerastoderma edule in a muddy sandflat of Marennes-Oléron Bay, as determined by analyses of carbon and nitrogen stable isotopes. Marine Ecology Progress Series 187(147–158): 1999.

    Google Scholar 

  • Le Berre, I., C. Hily, M. Lejart and R. Gouill. 2009. Analyse spatiale de la prolifération de C. gigas en Bretagne. http://cybergeo.revues.org/22818.Accessed 07 May 2012.

  • Le Pape, O. 1996 Modélisation des cycles biogéochimiques des éléments limitant la production phytoplanctonique en rade de Brest. Thesis. Ecole nationale supérieure d’agronomie de Rennes, Rennes

  • Le Pape, O., Y. Del Amo, A. Menesguen, A. Aminot, B. Quequiner, and P. Treguer. 1996. Resistance of a coastal ecosystem to increasing eutrophic conditions: the Bay of Brest (France), a semi-enclosed zone of Western Europe. Continental Shelf Research 16: 1885–1907.

    Article  Google Scholar 

  • Lefebvre, S., C. Harma, and J.L. Blin. 2009a. Trophic typology of coastal ecosystems based on δ13C and δ15N ratios in an opportunistic suspension feeder. Marine Ecology Progress Series 390: 27–37.

    Article  CAS  Google Scholar 

  • Lefebvre, S., J.C.M. Leal, S. Dubois, F. Orvain, J.L. Blin, M.P. Bataille, A. Ourry, and R. Galois. 2009b. Seasonal dynamics of trophic relationships among co-occurring suspension-feeders in two shellfish culture dominated ecosystems. Estuarine, Coastal and Shelf Science 82: 415–425.

    Article  CAS  Google Scholar 

  • Lejart, M. 2009. Etude du processus invasif de Crassostrea gigas en Bretagne: Etat des lieux, dynamique et conséquences écologiques. Thesis. Université de Bretagne occidentale, Brest

  • Lorrain, A., Y.M. Paulet, L. Chauvaud, N. Savoye, A. Donval, and C. Saout. 2002. Differential δ13C and δ15N signatures among scallop tissues: implications for ecology and physiology. Journal of Experimental Marine Biology and Ecology 275: 47–61.

    Article  CAS  Google Scholar 

  • Lorrain, A., N. Savoye, L. Chauvaud, Y.M. Paulet, and N. Naulet. 2003. Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material. Analytica Chimica Acta 491: 125–133.

    Article  CAS  Google Scholar 

  • Malet, N. 2005. Ecologie alimentaire de l’huitre Crassostrea gigas: Dynamiques des compositions isotopiques naturelles. Thesis. Université de La Rochelle, La Rochelle

  • Mann, K.H. 1982. Ecology of coastal waters. a systems approach, Vol 8. Berkeley: University of California Press.

    Google Scholar 

  • Marin-Leal, J.C., S. Dubois, F. Orvain, R. Galois, J.L. Blin, M. Ropert, M.P. Bataille, A. Ourry, and S. Lefebvre. 2008. Stable isotopes (δ13C, δ15N) and modelling as tools to estimate the trophic ecology of cultivated oysters in two contrasting environments. Marine Biology 153: 673–688.

    Article  Google Scholar 

  • McCutchan, J.H., W.M. Lewis, C. Kendall, and C.C. McGrath. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.

    Article  CAS  Google Scholar 

  • Nérot, C. 2011. Invertébrés benthiques et biomarqueurs: Témoins du fonctionnement trophique des écosystèmes côtiers. Thesis, Brest

  • Page, H., and M. Lastra. 2003. Diet of intertidal bivalves in the Ria de Arosa (NW Spain): evidence from stable C and N isotope analysis. Marine Biology 143: 519–532.

    Article  CAS  Google Scholar 

  • Parnell, A.C., R. Inger, S. Bearhop, and A.L. Jackson. 2010. Source partitioning using stable isotopes: coping with too much variation. PloS One 5: e9672.

    Article  Google Scholar 

  • Pernet, F., N. Malet, A. Pastoureaud, A. Vaguer, C. Quere, and L. Dubroca. 2012. Marine diatoms sustain growth of bivalves in a Mediterranean lagoon. Journal of Sea Research 68: 20–32.

    Article  CAS  Google Scholar 

  • Peterson, B.J., and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.

    Article  Google Scholar 

  • Phillips, D.L., and J.W. Gregg. 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136: 261–269.

    Article  Google Scholar 

  • Piola, R.F., S.K. Moore, and I.M. Suthers. 2006. Carbon and nitrogen stable isotope analysis of three types of oyster tissue in an impacted estuary. Estuarine, Coastal and Shelf Science 66: 255–266.

    Article  Google Scholar 

  • Post, D.M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • R development Core Team. 2005. R: a language and environment for statistical computing. In R Foundation for Statistical Computing, Vienna, Austria

  • Rajagopal, M. D. 1997. Some aspects on the interrelationships between nutrients and plankton in the estuarine and nearshore regions of Goa. Thesis. Cochin University of Science and Technology, Cochin

  • Riera, P. 1998. δ15N of organic matter sources and benthic invertebrates along an estuarine gradient in Marennes-Oleron Bay (France): implications for the study of trophic structure. Marine Ecology Progress Series 166: 143–150.

    Article  Google Scholar 

  • Riera, P. 2007. Trophic subsidies of Crassostrea gigas, Mytilus edulis and Crepidula fornicata in the Bay of Mont Saint Michel (France): a δ13C and δ15N investigation. Estuarine, Coastal and Shelf Science 72: 33–41.

    Article  Google Scholar 

  • Riera, P. 2009. Trophic plasticity in similar habitats: an example which severely limits generalization among ecosystems. Marine Biodiversity Records 2: e47.

    Article  Google Scholar 

  • Riera, P., and P. Richard. 1996. Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Estuarine, Coastal and Shelf Science 42: 347–360.

    Article  Google Scholar 

  • Riera, P., L.J. Stal, and J. Nieuwenhuize. 2000. Heavy δ15N in intertidal benthic algae and invertebrates in the Scheldt Estuary (The Netherlands): effect of river nitrogen inputs. Estuarine, Coastal and Shelf Science 51: 365–372.

    Article  CAS  Google Scholar 

  • Savoye, N. 2001. Origine et transfert de la matière organique particulaire dans les écosystèmes littoraux macrotidaux. Thesis. Université de Bretagne Occidentale, Brest

  • Schaal, G., P. Riera, and C. Leroux. 2008. Trophic coupling between two adjacent benthic food webs within a man-made intertidal area: a stable isotopes evidence. Estuarine, Coastal and Shelf Science 77: 523–534.

    Article  Google Scholar 

  • Schaal, G., P. Riera, and C. Leroux. 2010a. Trophic ecology in a Northern Brittany (Batz Island, France) kelp (Laminaria digitata) forest, as investigated through stable isotopes and chemical assays. Journal of Sea Research 63: 24–35.

    Article  CAS  Google Scholar 

  • Schaal, G., P. Riera, C. Leroux, and J. Grall. 2010b. A seasonal stable isotope survey of the food web associated to a peri-urban rocky shore. Marine Biology 157: 283–294.

    Article  Google Scholar 

  • Stephenson, R., F. Tan, and K. Mann. 1986. Use of stable carbon isotope ratios to compare plant material and potential consumers in a seagrass bed and a kelp bed in Nova Scotia, Canada. Marine Ecology Progress Series 30: 1–7.

    Article  CAS  Google Scholar 

  • Takai, N., A. Yorozu, T. Tanimoto, A. Hoshika, and K. Yoshihara. 2004. Transport pathways of microphytobenthos-originating organic carbon in the food web of an exposed hard bottom shore in the Seto Inland Sea, Japan. Marine Ecology Progress Series 284: 97–108.

    Article  Google Scholar 

  • Vander Zanden, M.J., and J.B. Rasmussen. 2001. Variation in 15N and 13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.

    Article  CAS  Google Scholar 

  • Yokoyama, H., Y. Ishihi, and S. Yamamoto. 2008. Diet-tissue isotopic fractionation of the Pacific oyster Crassostrea gigas. Marine Ecology Progress Series 358: 173–179.

    Article  Google Scholar 

  • York, J.K., G. Tomasky, I. Valiela, and D.J. Repeta. 2007. Stable isotopic detection of ammonium and nitrate assimilation by phytoplankton in the Waquoit Bay estuarine system. Limnology and Oceanography 52: 144–155.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the INSU EC2CO program ISOBENT and by the GIS-Europole Mer. We thank J-M. Munaron, E. Morize, E. Dabas, C. Oudard, and A. Aguirre Velarde for their help in oyster sampling and preparation. We also thank E. Moreau-Haug of IDHESA Bretagne Oceane for providing a model of bacteria concentrations. We would like to thank the two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violette Marchais.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 251 kb)

ESM 2

(PDF 53 kb)

ESM 3

(PDF 176 kb)

ESM 4

(PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchais, V., Schaal, G., Grall, J. et al. Spatial Variability of Stable Isotope Ratios in Oysters (Crassostrea gigas) and Primary Producers Along an Estuarine Gradient (Bay of Brest, France). Estuaries and Coasts 36, 808–819 (2013). https://doi.org/10.1007/s12237-012-9584-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-012-9584-x

Keywords

Navigation