Skip to main content
Log in

A Better Understanding of the Ecological Conditions for Leontopodium alpinum Cassini in the Swiss Alps

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Although Leontopodium alpinum is considered to be threatened in many countries, only limited scientific information about its autecology is available. In this study, we aim to define the most important ecological factors which influence the distribution of L. alpinum in the Swiss Alps. These were assessed at the national scale using species distribution models based on topoclimatic predictors and at the community scale using exhaustive plant inventories. The latter were analysed using hierarchical clustering and principal component analysis, and the results were interpreted using ecological indicator values. Leontopodium alpinum was found almost exclusively on base-rich bedrocks (limestone and ultramafic rocks). The species distribution models showed that available moisture (dry regions, mostly in the Inner Alps), elevation (mostly above 2,000 m a.s.l.) and slope (mostly >30°) were the most important predictors. The relevés showed that L. alpinum is present in a wide range of plant communities, all subalpine-alpine open grasslands, with a low grass cover. As a light-demanding and short species, L. alpinum requires light at ground level; hence, it can only grow in open, nutrient-poor grasslands. These conditions are met in dry conditions (dry, summer-warm climate, rocky and draining soil, south-facing aspect and/or steep slope), at high elevations, on oligotrophic soils and/or on windy ridges. Base-rich soils appear to also be essential, although it is still unclear whether this corresponds to physiological or ecological (lower competition) requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aeschimann D, Lauber K, Moser DM, Theurillat J-P (2004) Flora alpina. Belin, Paris

    Google Scholar 

  • Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Global Change Biol 11:1504–1513

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Arlettaz R, Schaub M, Fournier J, Reichlin TS, Sierro A, Watson JEM., Braunisch V (2010) From publications to public action: when conservation biologists bridge the gap between research and implementation. BioScience 60:835–842

    Article  Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  • Blöch C, Dickoré WB, Samuel R, Stuessy TF (2010) Molecular phylogeny of the Edelweiss (Leontopodium, Asteraceae – Gnaphalieae). Edinburgh J Bot 67:235–264

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer Verlag, New York

    Book  Google Scholar 

  • Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002) Evaluating resource selection functions. Ecol Modelling 157:281–300

    Article  Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetationskunde. Ed. 3. Springer Verlag, Wien-New York

  • Braun-Blanquet J (1969) Die Pflanzengesellschaften der rätischen Alpen im Rahmen ihrer Gesamtverbreitung. I. Teil. Bischofberger & Co, Chur

    Google Scholar 

  • Brieman L (2001) Random forest. Mach Learn 45:5–32

    Article  Google Scholar 

  • Carron C-A, Previdoli S, Baroffio C (2007) Helvetia, une nouvelle variété d’edelweiss issue d’hybrides de clones. Rev Suisse Vitic Arboric Hortic 39:125–130

    Google Scholar 

  • Deil U (2005) A review on habitats, plant traits and vegetation of ephemeral wetlands – a global perspective. Phytocoenologia 35:533–706

    Article  Google Scholar 

  • Delarze R, Gonseth Y (2008) Guide des milieux naturels de Suisse. Ecologie, menaces, espèces caractéristiques. Rossolis, Bussigny

    Google Scholar 

  • Dobner MJ, Schwaiger S, Jenewein IH, Stuppner H (2003) Antibacterial activity of Leontopodium alpinum (Edelweiss). J Ethnopharmacol 89:303–301

    Article  Google Scholar 

  • Dobner MJ, Sosa S, Schwaiger S, Altinier G, Loggia RD, Kaneider NC, Stuppner H (2004) Anti-inflammatory activity of Leontopodium alpinum and its constituents. Pl Med 70:502–508

    Article  CAS  Google Scholar 

  • Duchaufour P (1995) Pédologie. Sol, végétation, environnement. Ed 4. Masson, Paris

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Dweck AC (2004) A review of Edelweiss. SÖFW-Journal 130:65–68

    CAS  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Ellenberg H (1991) Zeigerwerte der Gefässpflanzen (ohne Rubus). In Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (eds) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18. Erich Golze KG, Göttingen, pp 9–166

  • Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274

    Article  Google Scholar 

  • Erhardt A (1993) Pollination of edelweiss, Leontopodium alpinum. Bot J Linn Soc 111:229–240

    Article  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: A statistical view of boosting – Rejoinder. Ann Stat 28:400–407

    Article  Google Scholar 

  • FSO (2010) Agriculture Suisse – Statistique de poche 2010. Swiss Federal Statistical Office, Bern

    Google Scholar 

  • Galland P (1982) Etude de la végétation des pelouses alpines au Parc national suisse. PhD Thesis, Université de Neuchâtel, Neuchâtel

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modelling 135:147–186

    Article  Google Scholar 

  • Handel-Mazzetti H (1927) Systematische Monographie der Gattung Leontopodium. Beih Bot Centralbl 44:1–178

    Google Scholar 

  • Hastie TJ, Tibshirani R (1990) Generalized additive models. Chapman and Hall, London

    Google Scholar 

  • Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Modelling 199:142–152

    Article  Google Scholar 

  • IPCC (2007) Summary for Policymakers. In Solomon S et al (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jean L (1947) Fleurs des Alpes. Ophrys, Paris

    Google Scholar 

  • Jiménez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers & Distribution 14:885–890

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life. Springer Verlag, Berlin

    Book  Google Scholar 

  • Landolt E, Bäumler B, Erhardt A, Hegg O, Klötzli F, Lämmler W et al (2010) Flora Indicativa. Haupt Verlag, Berne

    Google Scholar 

  • Le Lay G, Engler R, Franc E, Guisan A (2010) Prospective sampling based on model ensembles improves the detection of rare species. Ecography 33:1015–1027

    Article  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Liu CR, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized Linear Models. Ed. 2. Chapman & Hall, London

  • Moser D, Gygax A, Bäumler B, Wyler N, Palese R (2002) Liste rouge des fougères et plantes à fleurs menacées de Suisse. Office fédéral de l’environnement, des forêts et du paysage, Centre du Réseau suisse de floristique, Conservatoire et Jardin botanique de la Ville de Genève, Bern, Chambésy

  • Oberdorfer E, Müller T (1990) Pflanzensoziologische Exkursionsflora. Ulmer, Stuttgart

    Google Scholar 

  • Ogilivie JC, Creelman CD (1968) Maximum-likelihood estimation of receiver operating characteristic curve parameters. J Math Psychol 5:377–391

    Article  Google Scholar 

  • Randin CF, Engler R, Pearman PB, Vittoz P, Guisan A (2010) Using georeferenced databases to assess the effect of climate change on alpine plant species and diversity. In Spehn E, Körner C (eds) Data mining for global trends in mountain biodiversity. CRC Press, Taylor & Francis Group, Boca Raton, pp 149–163

    Google Scholar 

  • Reinalter R (2004) Zur Flora der Sedimentgebiete im Umkreis der Südrätischen Alpen, Livignasco, Bormiese und Engiadin'Ota (Schweiz-Italien). Birkhäuser, Basel

    Book  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org

  • Rey C, Rey S, Baroffio C, Vouillamoz JF, Roguet D (2011) Edelweiss, reine des fleurs. Editions du Belvédère, Fleurier

    Google Scholar 

  • Richard J-L (1991) Flore et végétation de Zermatt (VS): premier aperçu et réflexions. Bull Murith 109:27–40

    Google Scholar 

  • Ridgeway G (1999) The state of boosting. Comput Sci Stat 31:172–181

    Google Scholar 

  • Schaminée JHJ, Hennekens SM, Chytrý M, Rodwell JS (2009) Vegetation-plot data and databases in Europe: an overview. Preslia 81:173–185

    Google Scholar 

  • Sigg P (2008) Culture de l’edelweiss pour la fleur coupée. Rev Suisse Vitic Arboric Hortic 40:349–356

    Google Scholar 

  • Speroni E, Schwaiger S, Egger P, Berger AT, Cervellati R, Govoni P, Guerra MC, Stuppner H (2006) In vivo efficacy of different extracts of Edelweiss (Leontopodium alpinum Cass.) in animal models. J Ethnopharmacol 105:421–426

    Google Scholar 

  • Steiner A (2002) Die Vegetation der Gemeinde Zermatt. Geobot Helvetica 74:1–204

    Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W, Lafourcade B., Engler R, Araújo MB (2009) BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Vittoz P, Wyss T, Gobat J-M (2006) Ecological conditions for Saxifraga hirculus in Central Europe: A better understanding for a good protection. Biol Conservation 131:594–608

    Article  Google Scholar 

  • Vonlanthen CM, Bühler A, Veit H, Kammer PM, Eugster W (2006) Alpine plant communities: a statistical assessment of their relation to microclimatological, pedological, geomorphological, and other factors. Phys Geogr 27:137–154

    Article  Google Scholar 

  • Wagenitz G (1979) Compositae I: Allgemeiner Teil, Eupatorium-Achillea. In Hegi G, Conert HJ, Hamann U, Schultze-Motel W, Wagenitz G (eds) Illustrierte Flora von Mitteleuropa. Band VI, Angiospermae Dicotyledones 4, Teil 3. Ed. 2, Paul Parey, Berlin, pp 133–136

  • Wisz MS, Guisan A (2009) Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecology 9:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Wohlgemuth T (2000) Diskreter und kontinuierlicher Charakter der Vegetation – Waldvegetationsdaten als Referenz. Bauhinia 14:67–88

    Google Scholar 

  • Zimmermann NE, Edwards TC, Moisen GG, Frescino TS, Blackard JA (2007) Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. J Appl Ecol 44:1057–1067

    Article  PubMed Central  PubMed  Google Scholar 

  • Zimmermann NE, Kienast F (1999) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. J Veg Sci 10:469–482

    Article  Google Scholar 

Download references

Acknowledgements

We thank Info Flora and Martin Schütz from the Forschungsanstalt für Wald, Schnee und Landschaft (WSL) for providing data and “Fondation Dr Ignace Mariétan” and Weleda for partial funding. We are very grateful to Antoine Guisan for helpful advice regarding the modelling techniques and Tomáš Herben and two anonymous reviewers for their useful comments on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Vittoz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 501 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ischer, M., Dubuis, A., Keller, R. et al. A Better Understanding of the Ecological Conditions for Leontopodium alpinum Cassini in the Swiss Alps. Folia Geobot 49, 541–558 (2014). https://doi.org/10.1007/s12224-014-9190-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-014-9190-8

Keywords

Navigation