Skip to main content
Log in

Evaluation of Cellulosic and Protein Fibers for Coloring and Functional Finishing Properties Using Simultaneous Method with Eucalyptus Bark Extract as a Natural Dye

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Aqueous extract of Eucalyptus globulus L. bark is used for simultaneous dyeing and finishing of cotton, silk, wool, and eri silk fabrics in the absence of inorganic salts or mordants for producing value-added environment-friendly products. All the fabrics have an affinity towards the colorants obtained from this bark. The phytochemical studies reveal the presence of bioactive compounds, i.e. saponin, phenols, tannin, flavonoids, terpenoids, and glycosides in the bark. The protein fabrics dyed with this extract exhibit improved color fastness to washing and light as compared to cotton. A positive value of both a* and b* indicates the color of all the fabrics dyed with this bark is reddish-yellow. K/S values of all the dyed fabrics are improved with the increase in dye bath concentration from 100 g/l to 200 g/l for all the fabrics dyed with these colorants. The calculated average particle size and zeta potential value of the aqueous extract is ∼535 nm and −22.4 mV, respectively. All the dyed fabrics show an excellent result in terms of resistance against S. aureus and E. coli at 200 g/l dye concentration. Eucalyptus bark at 200 g/l dye bath concentration results in maximum UPF value for cotton, eri silk, and wool fabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Miranda, J. Gominho, and H. Pereira, BioResources, 7, 4350 (2012).

    Google Scholar 

  2. M. G. Vecchio, C. Loganes, and C. Minto, Open Agric. J., 10, 52 (2016).

    Article  CAS  Google Scholar 

  3. E. Saadaoui, K. B. Yahia, S. Dhahri, M. L. Ben Jama, and M. L. Khouja, Forestry Studies, 67, 86 (2017).

    Article  Google Scholar 

  4. T. Osawa and M. Namiki, Agric. Biol. Chem., 45, 735 (1981).

    CAS  Google Scholar 

  5. D. R. Batish, H. Pal Singh, R. K. Kohli, and S. Kaur, For. Ecol. Manage., 256, 2166 (2008).

    Article  Google Scholar 

  6. T. Takahashi, R. Kokubo, and M. Sakaino, Appl. Microbiol., 39, 60 (2004).

    Article  CAS  Google Scholar 

  7. M. A. Lima, G. B. Lavorente, H. K. P. da Silva, J. Bragatto, C. A. Rezende, O. D. Bernardinelli, E. R. deAzevedo, L. D. Gomez, S. J. McQueen-Mason, C. A. Labate, and I. Polikarpov, Biotechnol. Biofuels, 6, 1 (2013).

    Article  Google Scholar 

  8. I. Miranda, J. Gominho, I. Mirra, and H. Pereira, Ind. Crops Prod., 41, 299 (2013).

    Article  CAS  Google Scholar 

  9. V. Sarin and K. K. Pant, Bioresour. Technol., 97, 15 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. L. C. Morais, O. M. Freitas, E. P. Goncalves, L. T. Vasconcelos, and C. G. Gonzalez Beca, Water. Res., 33, 979 (1999).

    Article  CAS  Google Scholar 

  11. M. Yusuf, A. Ahmad, M. Shahid, M. I. Khan, S. A. Khan, N. Manzoor, and F. Mohammad, J. Cleaner Prod., 27, 42 (2012).

    Article  CAS  Google Scholar 

  12. M. Yusuf, M. Shahid, S. A. Khan, M. I. Khan, S. U. Islam, F. Mohammad, and M. A. Khan, J. Nat. Fibers, 10, 14 (2013).

    Article  CAS  Google Scholar 

  13. N. Baaka, W. Haddar, M. Ben Ticha, M. T. P. Amorim, and M. F. M’Henni, Nat. Prod. Res., 31, 1655 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. K. Phan, E. Van Den Broeck, V. Van Speybroeck, K. De Clerck, K. Raes, and S. De Meester, Dyes Pigm., 176, 108180 (2020).

    Article  CAS  Google Scholar 

  15. M. Yusuf, M. Shabbir, and F. Mohammad, Nat. Prod. Bioprospect., 7, 123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. B. Gebhardt, R. Sperl, R. Carle, and J. Müller-Maatsch, J. Cleaner Prod., 260, 120884 (2020).

    Article  CAS  Google Scholar 

  17. S. Saxena and A. S. M. Raja in “Roadmap to Sustainable Textiles and Clothing” (S. Muthu Ed.), pp.37–80, Textile Science and Clothing Technology, Springer, Singapore, 2014.

    Google Scholar 

  18. S. Jose, P. Pandit, and R. Pandey, Ind. Crops Prod., 142, 111833 (2019).

    Article  CAS  Google Scholar 

  19. V. Meena and J. Sheikh, Cellulose Chem. Technol., 52, 883 (2018).

    CAS  Google Scholar 

  20. R. Mongkholrattanasit, J. Kryštůfek, J. Wiener, and M. Viková, Fibres Text. East. Eur., 19, 94 (2011).

    CAS  Google Scholar 

  21. L. J. Rather, M. Shabbir, Q. Li, and F. Mohammad, AIChE Environ. Prog. Sustainable Energy, 38, 13187 (2019).

    Article  Google Scholar 

  22. K. A. Omer, Z. Tao, and A. I. Seedahmed, Fibres Text. East. Eur., 23, 60 (2015).

    Article  Google Scholar 

  23. S. Han and Y. Yang, Dyes Pigm., 64, 157 (2005).

    Article  CAS  Google Scholar 

  24. A. Sharma, S. Kadam, P. Mathur, S. Islam, and J. Sheikh, Sustainable Chem. Pharm., 11, 17 (2019).

    Article  Google Scholar 

  25. E. Koh and K. H. Hong, Dyes Pigm., 103, 222 (2014).

    Article  CAS  Google Scholar 

  26. K. H. Prabhu, M. D. Teli, and N. G. Waghmare, Fiber. Polym., 12, 753 (2011).

    Article  CAS  Google Scholar 

  27. M. L. Gulrajani, D. Gupta, and S. Ray Maulik, Indian J. Fibre Text. Res., 24, 131 (1999).

    CAS  Google Scholar 

  28. M. D. Teli and P. Pandit, ACS Sustainable Chem. Eng., 5, 8323 (2017).

    Article  CAS  Google Scholar 

  29. S. Roy Maulik and K. Agarwal, Indian J. Trad. Knowl., 13, 589 (2014).

    Google Scholar 

  30. D. Das, S. Ray Maulik, and S. C. Bhattacharya, Indian J. Fibre Text. Res., 33, 163 (2008).

    CAS  Google Scholar 

  31. S. Roy Maulik and L. Chakraborty, Asian Dyer, 15, 60 (2018).

    Google Scholar 

  32. S. Ray Maulik, D. Das, and S. C. Bhattacharya, J. Text. Inst., 102, 491 (2011).

    Article  Google Scholar 

  33. S. Roy Maulik, J. Inst. Eng. (India): Series E, 100, 1 (2019).

    CAS  Google Scholar 

  34. ISO 105-C10:2006, “Textiles-Tests for Colorfastness — Part C10: Colorfastness to Washing with Soap or Soap and Soda, Test Condition: Test A (1)”, International Organization for Standardization, Geneva, Switzerland.

  35. IS2454-1984, “Determination of Colorfastness of Textile Materials to Light”, IST Handbook of Textile Testing, 1984.

  36. ISO 105-X12:1993, “Textiles — Tests for Colour Fastness — Part X12: Colour Fastness to Rubbing”, International Organization for Standardization, Geneva, Switzerland, 1993.

    Google Scholar 

  37. L. Chakraborty, P. Pandit, and S. Roy Maulik, J. Cleaner Prod., 245, 118921 (2020).

    Article  CAS  Google Scholar 

  38. M. D. Teli and P. Pandit, Fiber. Polym., 18, 1679 (2017).

    Article  CAS  Google Scholar 

  39. M. D. Teli and P. Pandit, Fiber. Polym., 19, 41 (2018).

    Article  CAS  Google Scholar 

  40. A. Johnson, “The Theory of Colouration of Textiles”, 2nd ed., p.111, Society of Dyers & Colourists, Bradford, West Yorkshire, England, 1989.

    Google Scholar 

  41. C. L. Bird, “Theory and Practice of Wool Dyeing”, Society of Dyers & Colourists, Bradford, England, 1972.

    Google Scholar 

  42. M. L. Gulrajani, “Production of Silk: Chemical Processing of Silk”, Indian Institute of Technology, Delhi, 1993.

    Google Scholar 

  43. T. L. Dawson, J. Soc. Dyers Colour., 97, 115 (1981).

    Article  CAS  Google Scholar 

  44. V. Sharma and R. Paliwal, Int. J. Pharm. Pharm. Sci., 5, 179 (2013).

    CAS  Google Scholar 

  45. M. A. Maobe and R. M. Nyarango, Global J. Pharmacol., 7, 61 (2013).

    Google Scholar 

  46. M. Arshad, A. Beg, and Z. A. Siddiqui, Macromol. Mater. Eng., 7, 67 (1969).

    Google Scholar 

  47. M. Shahid and F. Mohammad, J. Cleaner Prod., 53, 310 (2013).

    Article  CAS  Google Scholar 

  48. M. Gorenšiek, F. Sluga, and R. Urbas, AATCC Review, 7, 44 (2007).

    Google Scholar 

  49. P. S. Vankar, V. Tiwari, and J. Srivastava, Electron. J. Environ. Agric. Food Chem., 5, 1664 (2006).

    Google Scholar 

  50. F. Yaylaci, S. Kolayli, M. Kucuk, S. Alpay Karaoglu, and E. Ulusoy, Asian J. Chem., 19, 2241 (2007).

    CAS  Google Scholar 

  51. B. R. Min, R. Merkel, S. Walker, G. Tomita, and R. C. Anderson, Sci. Res. Essays, 3, 66 (2008).

    Google Scholar 

  52. H. Akiyama, K. Fujii, O. Yamasaki, T. Oono, and K. Iwatsuki, J. Antimicrob., 48, 487 (2001).

    Article  CAS  Google Scholar 

  53. T. P. T. Cushnie and A. J. Lamb, Int. J. Antimicrob. Agents, 26, 343 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. L. Ammayappan and S. Jose in “Handbook of Sustainable Apparel Production”, 1st ed. (S. S. Muthu Ed.), p.334, CRC Press, 2015.

  55. L. Ammayappan, L. K. Nayak, D. P. Ray, S. Das, and A. K. Roy, J. Nat. Fibers, 10, 390 (2013).

    Article  CAS  Google Scholar 

  56. H. Akiyama, K. Fujii, O. Yamasaki, T. Oono, and K. Iwatsuki, J. Antimicrob. Chemother., 48, 487 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. E. Cadahia, E. Conde, M. C. García-Vallejo, and B. Fernández de Simón, Phytochem. Anal, 8, 78 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are very much grateful to Visva-Bharati University for allowing carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sankar Roy Maulik or Pintu Pandit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy Maulik, S., Chakraborty, L. & Pandit, P. Evaluation of Cellulosic and Protein Fibers for Coloring and Functional Finishing Properties Using Simultaneous Method with Eucalyptus Bark Extract as a Natural Dye. Fibers Polym 22, 711–719 (2021). https://doi.org/10.1007/s12221-021-0092-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0092-0

Keywords

Navigation