Skip to main content
Log in

Manufacturing and property evaluations of X-ray shielding fabric and pattern making of vests

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This study proposes to make protective vests with X-ray shielding effectiveness. X-ray shielding powders are coated onto sandwich air mesh fabrics (SAMF), which are then coated with another layer of powders to form a continuous surface; thus forming double-layer X-ray shielding fabric. The tensile strength of SAMF is first evaluated, after which a stereomicroscope and scanning electron microscope (SEM) observe the X-ray shielding fabric and double-layer X-ray shielding fabrics. Next, an X-ray shielding effect test measures them. The double-layer X-ray shielding fabrics are then tailored into X-ray shielding protective vests using vest patterns. The test results show that the X-ray shielding powders can combine well with SAMF by using urethane resin, and as a result, the X-ray shielding effectiveness is proportional to the content of the powders. The double-layer X-ray shielding fabrics exhibit an optimal X-ray shielding effectiveness due to their double-layer structure. The combination of SAMF provides flexibility to the protective vest regardless of the coating of X-ray shielding powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. R. Rush and N. A. Thompson, Radiography, 13, 214 (2007).

    Article  Google Scholar 

  2. A. J. T. Bakkum, T. W. J. Janssen, M. P. Rolf, J. C. Roos, J. Burcksen, D. L. Knol, and S. de Groot, Med. Eng. Phys., 36, 387 (2014).

    Article  Google Scholar 

  3. V. Harish, N. Nagaiah, T. N. Prabhu, and K. T. Varughese, J. Appl. Polym. Sci., 117, 3623 (2010).

    CAS  Google Scholar 

  4. K. S. Mann, B. Kaur, G. S. Sidhu, and A. Kumar, Radiat. Phys. Chem., 87, 16 (2013).

    Article  CAS  Google Scholar 

  5. S. Chen, M. Bourham, and A. Rabiei, Radiat. Phys. Chem., 96, 27 (2014).

    Article  CAS  Google Scholar 

  6. B. J. Kim, K. M. Bae, Y. S. Lee, K. H. An, and S. J. Park, Surf. Coat. Technol., 242, 125 (2014).

    Article  CAS  Google Scholar 

  7. T. C. Ling, C. S. Poon, W. S. Lam, T. P. Chan, and K. K. L. Fung, J. Hazard. Mater., 199, 321 (2012).

    Article  Google Scholar 

  8. R. E. Galt, Glob. Environ. Change-Human Policy Dimens., 18, 786 (2008).

    Article  Google Scholar 

  9. N. Z. N. Azman, S. A. Siddiqui, and I. M. Low, Mater. Sci. Eng. C-Mater. Biol. Appl., 33, 4952 (2013).

    Article  Google Scholar 

  10. W. H. Zhong, G. Sui, S. Jana, and J. Miller, Compos. Sci. Technol., 69, 2093 (2009).

    Article  CAS  Google Scholar 

  11. M. M. Abdel-Aziz, S. E. Gwaily, and M. Madani, Polym. Degrad. Stabil., 62, 587 (1998).

    Article  CAS  Google Scholar 

  12. V. Harish, N. Nagaiah, T. N. Prabhu, and K. T. Varughese, J. Appl. Polym. Sci., 112, 1503 (2009).

    Article  CAS  Google Scholar 

  13. S. Nambiar, E. K. Osei, and J. T. W. Yeow, J. Appl. Polym. Sci., 127, 4939 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Wen Lou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, JH., Chung, JC., Zeng, YZ. et al. Manufacturing and property evaluations of X-ray shielding fabric and pattern making of vests. Fibers Polym 16, 216–222 (2015). https://doi.org/10.1007/s12221-015-0216-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-0216-5

Keywords

Navigation