Skip to main content
Log in

Dynamic mechanical analysis of randomly oriented short bagasse/coir hybrid fibre-reinforced epoxy novolac composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Hybrid composites of epoxy novolac reinforced with short bagasse fibres and short coir fibres were prepared. The mechanical and dynamic mechanical properties of these bagasse-coir hybrid fibres reinforced epoxy novolac composites were investigated with reference to different layering patterns of the composites. The tensile properties of the tri-layer composites are recorded higher than those of the bi-layer composites, whereas the flexural properties of the tri-layer composites are lower than bi-layer composites. The tensile strength of the intimate mix composite is comparable with trilayer composite having bagasse as skin material. The effect of layering pattern on storage modulus (E′), damping behavior (tan δ), and loss modulus (E″) was studied as a function of temperature and frequency. The E′ values of the bi-layer composites are recorded lower than those of tri-layer (bagasse/coir/bagasse) and intimately mixed hybrid composites. The minimum E′ value is obtained for the composites made with coir as skin layer. Bi-layer composite shows maximum damping property. The theoretical modeling showed good correlation with experimental results at above glass transition temperature (T g ), while theoretical model deviates experimental data at lower T g . The Arrhenius relationship has been used to calculate the activation energy of the glass transition of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. C. M. Ma, “First Asian Australasian Conference on Composite Materials (AACCM-1)”, p.205, Osaka, Japan, 1998.

  2. S. A. R. Hashmi, T. Kitano, and N. Chand, Polym. Compos., 24, 149 (2003).

    Article  CAS  Google Scholar 

  3. G. Marom, S. Fischer, and F. R. Tuler, J. Mater. Sci., 18, 1419 (1978).

    Article  Google Scholar 

  4. M. S. Sreekala, J. George, M. G. Kumaran, and S. Thomas, Compos. Sci. Technol., 62, 339 (2002).

    Article  CAS  Google Scholar 

  5. G. Kretsis, Composites, 18, 13 (1987).

    Article  CAS  Google Scholar 

  6. P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol., 63, 1259 (2003).

    Article  CAS  Google Scholar 

  7. S. V. Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, Composites: Part A, 35, 371 (2004).

    Article  Google Scholar 

  8. M. M. Thwe and K. Liao, Composites: Part A, 33, 43 (2002).

    Article  Google Scholar 

  9. S. Joseph, M. S. Sreekala, Z. Oommen, P. Koshy, and S. Thomas, Compos. Sci. Technol., 62, 1857 (2002).

    Article  CAS  Google Scholar 

  10. A. K. Bledzki and J. Gassan, Prog. Polym. Sci., 24, 221 (1999).

    Article  CAS  Google Scholar 

  11. A. K. Mohanty, M. Misra, and G. Hinrichsen, Macromole. Mater. Eng., 276/277, 1 (2000).

    Article  CAS  Google Scholar 

  12. J. Karger-Kocsis, “Polypropylene: Structure, Blends and Composites”, p.3, London, Chapman and Hall, 1995.

  13. D. Ray, B. K. Sarkar, S. Das, and A. K. Rana, Compos. Sci. Technol., 62, 911 (2002).

    Article  CAS  Google Scholar 

  14. M. Idicula, S. K. Malhotra, K. Joseph, and S. Thomas, J. Appl. Polym. Sci., 97, 2168 (2005).

    Article  CAS  Google Scholar 

  15. A. K. Bledzki and W. Y. Zhang, J. Rein. Plas. Compos., 20, 1263 (2001).

    CAS  Google Scholar 

  16. M. Idicula, S. K. Malhotra, K. Joseph, and S. Thomas, Compos. Sci. Technol., 65, 1077 (2005).

    Article  CAS  Google Scholar 

  17. M. Idicula, N. R. Neelakantan, Z. Oommen, K. Joseph, and S. Thomas, J. Appl. Polym. Sci., 96, 1699 (2005).

    Article  CAS  Google Scholar 

  18. N. E. Marcovich, M. M. Reboredo, and M. I. Aranguren, J. Appl. Polym. Sci., 70, 2121 (1998).

    Article  CAS  Google Scholar 

  19. J. K. Tan, T. Kitano, and T. Hatakeyama, J. Mater. Sci., 25, 3380 (1990).

    Article  CAS  Google Scholar 

  20. M. Idicula, N. R. Neelakantan, and S. Thomas, Proceedings of the USM JIRCAS Joint International Symposium, 368 (2001).

  21. S. Dong and R. Gauvin, Polym. Compos., 14, 414 (1993).

    Article  CAS  Google Scholar 

  22. M. P. Sepe, Plastic Design Library, pp.1–8, New York, 1998.

  23. J. George, S. S. Bhagwan, and S. Thomas, J. Thermal. Anal., 47, 1121 (1996).

    Article  CAS  Google Scholar 

  24. T. Murayama, “Dynamic Mechanical Analysis of Polymeric Materials”, 2nd ed., Elsevier, Amsterdam, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arup Choudhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saw, S.K., Sarkhel, G. & Choudhury, A. Dynamic mechanical analysis of randomly oriented short bagasse/coir hybrid fibre-reinforced epoxy novolac composites. Fibers Polym 12, 506–513 (2011). https://doi.org/10.1007/s12221-011-0506-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-011-0506-5

Keywords

Navigation