Skip to main content

Advertisement

Log in

Visuo-haptic virtual exploration of single cell morphology and mechanics based on AFM mapping in fast mode

  • Research Paper
  • Published:
Journal of Micro-Bio Robotics Aims and scope Submit manuscript

Abstract

Today the combination of several microscopy techniques over a sample can be performed at the same time on the same region. To fully capitalize on their complementarities and reveal new properties or behaviors as well as to present them in a new and attractive way, enhancing the experimental data exploration is a key issue. Especially, science education at micro and nanoscale is often limited by the complexity of making complicated knowledge accessible and easily remembered by the larger public. We propose an “out of the box” way to introduce complex scientific subjects like cell biology and polymer micro-rheology using haptic display and virtual reality. To reach this ambitious goal, firstly we combined the advantages of the Atomic Force Microscopy (AFM) and Fluorescence Microscopy (FM) in order to get complementary real experimental data on fixed and living isolated animal cells adhering on a protein micro-pattern or on a collagen-coated soft hydrogel. Secondly, thanks to the recent and fast AFM modes (PeakForce and Quantitative Imaging) dedicated to nanomechanical investigations, we achieved high resolution mapping images of the cell morphology, architecture and local mechanical properties. Then this set of data was implemented in a free simulation engine connected to a low-cost haptic device to create a virtual and interactive cell or polymer environment. In this environment, the user can explore the stiffness across three soft samples and can relate it to specific sample components. This dedicated visuo-haptic environment provides a novel sensory approach of the cell biology and/or micro(bio)mechanics through an active exploration of a set of scientific experimental data. This work paves the way to an affordable interactive and multisensory VR platform where various AFM images recorded in Peak Force or Quantitative Imaging, could be load in order to be actively explored; this approach fits into the emerging field of touching data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jansen K, Atherton P, Ballestrem C (2017) Mechanotransduction at the cell-matrix interface. Semin Cell Dev Biol 71:75–83

    Article  Google Scholar 

  2. Park JS, Chu JS, Tsou AD, Diop R, Tang Z, Wang A, Li S (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β. Biomaterials 32(16):3921–3930

    Article  Google Scholar 

  3. Eroshenko N, Ramachandran R, Yadavalli VK, Rao RR (2013) Effect of substrate stiffness on early human embryonic stem cell differentiation. J Biol Eng 7:7

    Article  Google Scholar 

  4. Rauzi M, Verant P, Lecuit T, Lenne P-F (2008) Nature and anisotropy of cortical forces orienting drosophila tissue morphogenesis. Nat Cell Biol 10:1401–1410

    Article  Google Scholar 

  5. Lekka M (2016) Discrimination between normal and cancerous cells using AFM. BioNanoScience 6:65–80

    Article  Google Scholar 

  6. Zhu X, Zhang N, Wang Z, Liu X (2016) Investigation of work of adhesion of biological cell (human hepatocellular carcinoma) by AFM nanoindentation. J Micro-Bio-Robot 11:47–55

    Article  Google Scholar 

  7. Wang N (2017) Review of cellular mechanotransduction. J Phys D Appl Phys 50:233002

    Article  Google Scholar 

  8. Bivall P, Ainsworth S, Tibell LAE (2011) Do haptic representations help complex molecular learning? Sci Educ 95:700–719

    Article  Google Scholar 

  9. Millet G, Lécuyer A, Burkhardt J-M, Haliyo S, Régnier S (2013) Haptics and graphic analogies for the understanding of atomic force microscopy. International Journal of Human-Computer Studies 71:608–626

    Article  Google Scholar 

  10. Basdogan C, Sedef M, Harders M, Wesarg S (2007) Vr-based simulators for training in minimally invasive surgery. IEEE Comput Graph Appl 27:54–66

    Article  Google Scholar 

  11. Minogue J, Gail Jones M, Broadwell B, Oppewall T (2006) The impact of haptic augmentation on middle school students’ conceptions of the animal cell. Virtual Reality 10:293–305

    Article  Google Scholar 

  12. Ladjal H, Hanus J, Pillarisetti A, Keefer C, Ferreira A, Desai JP (2010) Realistic visual and haptic feedback simulator for real-time cell indentation, in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3993–3998

  13. Marliere S, Marchi F, Florens JL, Luciani A, Chevrier J (2008) An augmented reality nanomanipulator for learning nanophysics: The “nanolearner” platform, in 2008 International Conference on Cyberworlds,) pp. 94–101

  14. Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1):1–152

    Article  Google Scholar 

  15. Radotic K, Roduit C, Simonovic J, Hornitschek P, Fankhauser C, Mutavdžic D, Steinbach G, Dietler G, Kasas S (2012) Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth. Biophys J 103:386–394

    Article  Google Scholar 

  16. Lu L, Oswald SJ, Ngu H, Yin FC-P (2008) Mechanical properties of actin stress fibers in living cells. Biophysical journal 95(12):6060–6071

    Article  Google Scholar 

  17. Calzado-Martín A, Encinar M, Tamayo J, Calleja M, San Paulo A (2016) Effect of actin organization on the stiffness of living breast cancer cells revealed by peak-force modulation atomic force microscopy. ACS Nano 10(3):3365–3374

    Article  Google Scholar 

  18. JPK Instruments AG, « Application note: QITM mode - Quantitative imaging with the NanoWizard 3 AFM »

  19. Schillers H, Medalsy I, Hu S, Slade AL, Shaw JE (2016) Peakforce tapping resolves individual microvilli on living cells. J Mol Recognit 29:95–101

    Article  Google Scholar 

  20. Cartagna-Ruvera AX, Wang WH, Geahlen RL, Raman A (2015) Fast multi-frequency and quantitative nanomechanical mapping of live cell using the atomic force microscope. Sci Rep 5:p11692

    Article  Google Scholar 

  21. Alsteens D, Trabelsi H, Soumillion P, et Dufrêne YF (2013) Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nature Communications, vol. 4

  22. Babu PKV, Rianna C, Mirastschijski U, Radmacher M (2019) Nano-mechanical mapping of interdependent cell and ECM mechanics by AFM force spectroscopy. Sci Rep 9:1–19

    Article  Google Scholar 

  23. C. Petit, M. Kechiche, I. A. Ivan, R. Toscano, V. Bolcato, E. Planus, and F. Marchi, « Characterization of micro/nano-rheology properties of soft and biological matter combined with a virtual haptic exploration » , International conference on Manipulation, Automation and Robotics at Small Scales (MARSS) IEEE Helsinki, Finland, pp. 1–6 (2019)

  24. Kechiche M, Petit C, Marchi F, Toscano R, Bolcato V, Planus E, Ivan IA (2019) Haptic exploration of a cell morphology and rheology properties at nanoscale using AFM Peak-Force mode. IEEE World Haptics Conference, Tokyo, Japan, July 9–12

  25. CYTOO, « CYTOOchips™ Starter’s A x18 »: https://cytoo.com/system/files_force/node/chips/files/CytooChips-Standard_1.pdf?download=1

  26. Ahmed WW, Fodor É, Betz T (2015) Active cell mechanics: measurement and theory. Biochimica et Biophysica Acta (BBA) Molecular Cell Research 1853(11, Part B):3083–3094

    Article  Google Scholar 

  27. Livne A, Geiger B (2016) The inner workings of stress fibers − from contractile machinery to focal adhesions and back. J Cell Sci 129:1293–1304

    Article  Google Scholar 

  28. Théry M (2010) Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 123:4201–4213

    Article  Google Scholar 

  29. Rigato A, Rico F, Eghiaian F, Piel M, Scheuring S (2015) Atomic force microscopy mechanical mapping of micropatterned cells shows adhesion geometry-dependent mechanical response on local and global scales. ACS Nano 9:5846–5856

    Article  Google Scholar 

  30. Petit C, Guignandon A, Avril S (2019) Traction force measurements of human aortic smooth muscle cells reveal a motor-clutch behavior. Molecular and Cell Biomechanics 16:87–108

    Google Scholar 

  31. Goffin JM, Pittet P, Csucs G, Lussi JW, Meister J-J, Hinz B (2006) Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers. J Cell Biol 172:259–268

    Article  Google Scholar 

  32. Chen J, Li H, SundarRaj N, Wang JH-C (2007) Alpha-smooth muscle actin expression enhances cell traction force. Cell Motil Cytoskeleton 64:248–257

    Article  Google Scholar 

  33. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  34. Meyer E, Hug HJ, Bennewitz R (2004) Introduction to scanning probe microscopy. Springer Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  35. Lévy R, Maaloum M (2001) Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods. Nanotechnology 13:33–37

    Article  Google Scholar 

  36. Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunaga L, Gurley J, Elings V (1994) Tapping mode atomic force microscopy in liquids. Appl Phys Lett 64:1738–1740

    Article  Google Scholar 

  37. Morkvėnaitė-Vilkončienė I, Ramanavičienė A, Ramanavičius A (2013) Atomic force microscopy as a tool for the investigation of living cells. Medicina (Kaunas) 49:155–164

    Google Scholar 

  38. Sirghi L (2010) Atomic force microscopy indentation of living cells. Microscopy: science, technology. Applications and Education, Formatex, Badajoz, pp. 433–440

  39. Shuman DJ, Costa AL, Andrade MS (2007) Calculating the elastic modulus from nanoindentation and microindentation reload curves. Materials Characterization 58:380–389

    Article  Google Scholar 

  40. Foster B (2012) New atomic force microscopy(afm) approaches life sciences gently, quantitatively, and correctively. Am Lab 44:24–28

    Google Scholar 

  41. Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 78:520–535

    Article  Google Scholar 

  42. Sadeghian H, van den Dool TC, Uziel Y, Or RB (2015) High-speed AFM for 1x node metrology and inspection: Does it damage the features? , in Metrology, Inspection, and Process Control for Microlithography XXIX, vol. 9424, p. 94240Q

  43. Schäffer TE, Cleveland JP, Ohnesorge F, Walters DA, Hansma PK (1996) Studies of vibrating atomic force microscope cantilevers in liquid. J Appl Phys 80:3622–3627

    Article  Google Scholar 

  44. Englund R, Palmerius KL, Hotz I, Ynnerman A (2018) Touching data: enhancing visual exploration of flow data with haptics. Comuting in Science & Enginneering, 89–99

  45. Féréol S, Fodil R, Laurent V, Planus E, Louis B, Pelle G, Isabey D (2008) Mechanical and structural assessment of cortical and deep cytoskeleton reveals substrate-dependent alveolar macrophage remodeling. Biomed Mater Eng 18:105–118

    Google Scholar 

  46. Fodil R, Laurent V, Planus E, Isabey D (2003) Characterization of cytoskeleton mechanical properties and 3d-actin structure in twisted adherent epithelial cells. Biorheology 40:241–245

    Google Scholar 

  47. Lecuyer A, Burkhardt JM, Coquillart S, Coiffet P (2001) Boundary of illusion: an experiment of sensory integration with a pseudo-haptic system. In Proceedings of IEEE VR’2001

Download references

Acknowledgments

National project FUI - REVE 5D: Réalité Augmentée pour la Culture, les Infrastructures et l’Industrie, University of Lyon, ENISE.

Regional project “Apprentissage Enactif” funding by IDEX (Initiative D’EXcellence) Formation, University of Grenoble Alpes.

CIME Nanotech for AFM support and funding of Claudie Petit for data about the osteoblast cell.

European Research Council (ERC grant biolochanics, grant number 647067) for funding Claudie Petit works on AoSMC cells, EMSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Marchi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(MP4 29,964 kb)

ESM 2

(MP4 62,397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petit, C., Kechiche, M., Ivan, I.A. et al. Visuo-haptic virtual exploration of single cell morphology and mechanics based on AFM mapping in fast mode. J Micro-Bio Robot 16, 147–160 (2020). https://doi.org/10.1007/s12213-020-00140-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-020-00140-5

Keywords

Navigation