Skip to main content
Log in

Sensitivity of suspension pattern of numerically simulated sediments to oscillating periods of channel flows over a rippled bed

  • Coastal and Harbor Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

In this study, we investigated the sediment suspension process over a ripple, using large eddy simulation and a Lagrangian particle tracking model to numerically calculate the individual motion of sediment grains in turbulent boundary layer flows. We examined the relationship of the sediment convection process with the formation of lee eddies at the back of the ripple. We tested three flow conditions by changing the oscillating period while keeping other conditions. In all three cases lee eddies developed, but they formed at different flow phases and differed in their duration. These lee eddies significantly influenced the turbulent kinetic energy distribution and sediment suspension pattern as they showed phase differences between the cases, according to their lee eddy formation. We compared two types of sediment suspension rates by counting the number of suspended sediment grains. Both these rates showed that maximum sediment pick-up occurred earlier in the oscillating flow phase as the period increased, but the magnitude of the pick-up rate decreased with increasing period. The results of our study indicate that the suspension pattern may vary significantly with the period. Therefore, formulas for sediment pick-up rates, which usually give maximum rates at the time of flow reversal over ripples, may require an additional controlling factor—the oscillation period. The sediment suspension pattern, however, shows some discrepancies from that observed by van der Werf et al. (2007) as the sediments were not suspended at the time of flow reversal. This is likely due to the low steepness of the ripple and the employment of an unrealistically small sediment size in our study experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amoudry, L. O., Bell, P. S., Thorne, P. D., and Souza, A. J. (2013). “Toward representing wave-induced sediment suspension over sand ripples in RANS models.” J. Geophys. Res., Vol. 118, No. 5, pp. 2378–2392, DOI: 10.1002/jgrc.20188.

    Article  Google Scholar 

  • Amoudry, L. O., Souza, A. J., Thorne, P. D., and Liu, P. (2016). “Parameterization of intrawave ripple-averaged sediment pickup above steep ripples.” J. Geophys. Res., Vol. 121, No. 1, pp. 658–673, DOI: 10.1002/2015JC011185.

    Article  Google Scholar 

  • Bagnold, B. A. (1946). “Motion of waves in shallow water: Interaction between waves and sand bottoms.” Proc. R. Soc. London Ser. A, Vol. 187, No. A1008, pp. 1–15, DOI: 10.1098/rspa.1946.0062.

    Article  Google Scholar 

  • Bagnold, B. A. (1954). “The flow of cohesionless grains in fluids.” Phil. Trans. Roy. Soc. Lond., Vol. 249, No. 964, pp. 235–296, DOI: 10.1098/rsta.1956.0020.

    Article  MathSciNet  Google Scholar 

  • Balaras, E. (1995). “Finite difference computations of high reynoldsnumber flows using the dynamic subgrid-scale model.” Theor. Comp. Fluid Dyn., Vol. 7, No. 3, pp. 207–216, DOI: 10.1007/BF00312363.

    Article  MATH  Google Scholar 

  • Balaras, E. (2004). “Modeling complex boundaries using an external force field on fixed cartesian grids in large-eddy simulations.” Computers and Fluids., Vol. 33, No. 3, pp. 375–404, DOI: 10.1016/S0045-7930(03)00058-6.

    Article  MATH  Google Scholar 

  • Bijker, E., van Hijun, E., and Vellinga, P. (1977). “Sand transport by waves.” Proc.15th Int. Conf. Coastal Eng., pp. 1149–1167, ASCE, DOI: 10.9753/icce.v15.%25p.

    Google Scholar 

  • Blondeaux, P. (1990). “Sand ripples under sea wave; Part 1. Ripple formation.” J. Fluid Mech., Vol. 218, No. 1, pp. 1–17, DOI: 10.1017/S0022112090000908.

    Article  MathSciNet  MATH  Google Scholar 

  • Blondeaux, P., Bruschi, A., Lalli, F., Pesarino, V., and Vittori, G. (2012). “Steady streaming and sediment transport at the bottom of sea waves.” J. Fluid Mech., Vol. 697, No. 1, pp. 115–149, DOI: 10.1017/jfm.2012.50.

    Article  MathSciNet  MATH  Google Scholar 

  • Breuer, M. and Alletto, M. (2012). “Efficient simulation of particleladen flows with high mass loadings using les.” Int. J. Heat and Fluid Flows, Vol. 35, No. 1, pp. 2–12, DOI: 10.1016/j.ijheatfluidflow. 2012.01.001.

    Article  Google Scholar 

  • Chang, Y. S. and Scotti, A. (2004). “Modeling unsteady turbulent flows over ripples: Raynolds-averaged navier-stokes equations (rans) versus large-eddy simulation (les).” J. Geophys. Res., Vol. 109, No. C9, DOI: 10.1029/2003JC002208.

  • Chang, Y. S. and Scotti, A. (2006). “Turbulent convection of suspended sediments due to flow reversal.” J. Geophys. Res., Vol. 111, No. C07001, DOI: 10.1029/2005JC003240.

  • Chang, Y. S., Ahn, K., Hwang, J. H., and Park, Y. G. (2013). “Sediment particulate motions over a ripple under different wave amplitude conditions.” J. Korean Soc. Coastal and Ocean Engineers, Vol. 25, No. 6, pp. 374–385, DOI: 10.9765/KSCOE.2013.25.6.374.

    Article  Google Scholar 

  • Chang, Y. S., Hwang, J. H., and Park, Y. G. (2015). “Numerical simulation of sediment particles released at the edge of the viscous sublayer in steady and oscillating turbulent boundary layers.” J. Hydro-Environ. Res., Vol. 9, No. 1, pp. 36–48, DOI: 10.1016/j.jher.2013.07.002.

    Article  Google Scholar 

  • Chang, Y. S. and Park, Y. G. (2016). “Suspension of sediment particles over a ripple due to turbulent convection under unsteady flow conditions.” Ocean Sci. J., Vol. 51, No. 1, pp. 127–135, DOI: 10.1007/s12601-016-0011-2.

    Article  Google Scholar 

  • Davies, A. G. and Thorne, P. D. (2005). “Modeling and measurement of sediment transport by waves in the vortex ripple regime.” J. Geophys. Res., Vol. 111, No. C05017, DOI: 10.1029/2004JC002468.

  • Harries, J. C. and Grilli, S. T. (2014). “Large eddy simulation of sediment transport over rippled beds.” Nonlin. Processes Geophys., Vol. 21, No. 6, pp. 1169–1184, DOI: 10.5194/npg-21-1169-2014.

    Article  Google Scholar 

  • Hunt, J. C. R. and Moin, J. F. (2000). “Eddy structure in turbulent boundary layers.” Eur. Mech. B-Fluids., Vol. 19, No. 1, pp. 673–694, DOI: 10.1016/S0997-7546(00)00129-17546(00)00129-1.

    Article  MATH  Google Scholar 

  • Hudson, J. D., Dykhno, L., and Hanratty, T. J. (1996). “Turbulence production in a flow over a wavy wall.” Exp. Fluids, Vol. 20, No. 4, pp. 257–265, DOI: 10.1007/BF00192670.

    Article  Google Scholar 

  • Li, Z. and Davis, A. G. (1996). “Towards predicting sediment transport in combined wave-current flow.” J. Wat. Port Coast. Ocean Engrg., Vol. 122, No. 4, pp. 157–164, DOI: 10.1061/(ASCE)0733-950X (1996)122:4(157).

    Article  Google Scholar 

  • Li, Y., McLaughlin, J. B., Kontomaris K., and Portela, L. (2001). “Numerical simulation of particle-laden turbulent channel flow.” Phys. Fluids, Vol. 13, No. 10, pp. 2957–2967, DOI: 10.1063/1.1396846.

    Article  MATH  Google Scholar 

  • Mattioli, M., Alsina, J.M., Mancinelli, A., Miozzi, M., and Brocchini, M. (2012). “Experimental investigation of the nearbed dynamics around a submarine pipeline laying on a different types of seabed: The interaction between turbulent structures and particles.” Adv. Water Res., Vol. 48, No. 1, pp. 31–46, DOI: 10.1016/j.advwatres. 2012.04. 010.

    Article  Google Scholar 

  • Mattioli, M., Mancinelli, A., and Brocchini, M. (2013). “Experimental investigation of the wave-induced flow around a surface-touching cylinder.” J. Fluids Struct., Vol. 37, No. 1, pp. 62–87, DOI: 10.1016/j.jfluidstructs.2012.10.002.

    Article  Google Scholar 

  • Meneveau, C., Lund T. S., and Cabot, W. H. (1996). “A lagrangian dynamic subgrid-scale model of turbulence.” J. Fluid Mech., Vol. 319, No. 1, DOI: 10.1017/S0022112096007379.

  • Meneveau, C. and Katz, J. (2000). “Scale invariance and turbulence models for large-eddy simulation.” Annu. Rev. Fluid Mech., Vol. 32, No. 1, pp. 1–32, DOI: 10.1146/annurev.fluid.32.1.1.

    Article  MathSciNet  MATH  Google Scholar 

  • Maxey, M. R. and Riley, J. (1983). “Equation of motion for a small rigid sphere in a non-uniform flow.” Phys. Fluids, Vol. 26, No. 4, pp. 883–889.

    Article  MATH  Google Scholar 

  • Nielsen, P. (1979). “Some basic concepts of wave sediment transport.” Inst. of Hydrodynamics and Hydr. Engrg., ISVA, Tech. Univ. Denmark, 20.

    Google Scholar 

  • Nielsen, P. (1988). “Three simple models of wave sediment transport.” Coastal Engrg., Vol. 12, No. 2, pp. 43–62, DOI: 10.1016/0378-3839 (88)90014-2.

    Article  Google Scholar 

  • Nielsen, P. (1992). Coastal bottom boundary layers and sediment transport. volume 4. World Scientific, River Egde, NJ.O’Hara

    Book  Google Scholar 

  • Murray, R. B., Thorne, P. D., and Hodgson, D. M. (2011). “Infrawave observations of sediment entrainment processes above sand ripples under irregular waves.” J. Geophys. Res., Vol. 116, No. C01001, DOI: 10.1029/2010JC006216.

  • Patankar, N. A., Ko, T., Choi, H. G., and Joseph, D. D. (2001). “A correlation for the lift-off of many particles in plane poiseuille flows of newtonian fluids.” J. Fluid Mech., Vol. 445, No. 1, pp. 55–76, DOI: 10.1017/S0022112001005274.

    MATH  Google Scholar 

  • Pedinotti, S, Mariotti, G., and Banerjee, S. (1992). “Direct numerical simulation of particle behavior in the wall region of turbulent flows in horizontal channels.” Int. J. Multiphase Flow, Vol. 18, No. 6, pp. 927–941, DOI: 10.1016/0301-9322(92)90068-R.

    Article  MATH  Google Scholar 

  • Piomelli, U. (1999). “Large-eddy simulation: Achievements and challenges.” Prog. Aerosp. Sci., Vol. 35, No. 4, pp. 335–362, DOI: 10.1016/S0376-0421(98)00014-1.

    Article  Google Scholar 

  • Piomelli, U., Balaras, E., and Pascarelli, A. (2000). “Turbulent structures in accelerating boundary layers.” J. of Turbulence, Vol. 1, No. 1, pp. 1–12, DOI: 10.1088/1468-5248/1/1/001.

    Article  MATH  Google Scholar 

  • Robinson, S. K. (1991). “Coherent motions in the turbulent boundary layer.” Ann. Rev. Fluid Mech., Vol. 23, No. 00, pp. 601–639, DOI: 10.1146/annurev.fl.23.010191.003125.

    Article  Google Scholar 

  • Scandura, P., Vittori, G., and Blondeaux, P. (2000). “Three-dimensional oscillatory flow over steep ripples.” J. Fluid Mech., Vol. 412, No. 1, pp. 355–378.

    Article  MathSciNet  MATH  Google Scholar 

  • Scotti, A. and Piomelli, U. (2001). “Numerical simulation of pulsating turbulent channel flow.” Phys. Fluids, Vol. 13, No. 5, pp. 1367–1384, DOI: 10.1063/1.1359766.

    Article  MATH  Google Scholar 

  • Sleath, J. F. A. (1982). “The suspension of sands by waves.” J. Hydraulic Res., Vol. 20, No. 5, pp. 439–452, DOI: 10.1080/00221688209499472.

    Article  Google Scholar 

  • Smagorinsky, J. (1963). “General circulation experiments with the primitive equations, i. the basic experiment.” Monthly Weather Rev., Vol. 91, No. 3, pp. 99–164, DOI: 10.1175/1520-0493(1963)091 <0099:GCEWTP>2.3.CO;2.

    Article  Google Scholar 

  • Soldati, A. and Marchioli, C. (2012). “Sediment transport in steady turbulent boundary layers: Potentials, limitations, and perspectives for lagrangian tracking in dns and les.” Adv. Wat. Res., Vol. 48, No. 1, pp. 18–30, DOI: 10.1016/j.advwatres.2012.05.011.

    Article  Google Scholar 

  • Thorne, P. D., Davis, A. G., and Williams, J. J. (2003). “Measurements of near-bed infra-wave sediment entrainment above vortex ripples.” Geophys. Res. Lett., Vol. 30, No. 20, DOI: 10.1029/2003GL018427.

  • Thorne, P. D., Davis, A. G., and Bell, P. S. (2009). “Observations and analysis of sediment diffusivity profiles over sandy rippled beds under waves.” J. Geophys. Res., Vol. 114, No. C02023, DOI: 10.1029/2008JC004944.

  • Wang, Q. and Squires, K. D. (1996). “Large eddy simulation of particleladen turbulent channel flow.” Phys. Fluids, Vol. 8, No. 5, pp. 1207–1223, DOI: 10.1063/1.868911.

    Article  MATH  Google Scholar 

  • Van der Werf, J. J., Doucette, J. S., O’Donoghue, T., and Ribberink, J. S. (2007). “Detailed measurements of velocities and suspended sand concentration over full-scale ripples in regular oscillatory flow.” J. Geophys. Res., Vol. 112, No. F02012, DOI: 1 0.1029/2006JF000614.

  • Van der Werf, J. J., Magar, V., Malarkey, J., Guizien, K., and O’Donohue, T. (2008). “2DV modelling of sediment transport processes over fullscale ripples in regular asymmetric oscillatory flow.” Continental Shelf Res., Vol. 28, No. 8, pp. 1040–1056, DOI: 10.1016/j.csr.2008. 02.007.

    Article  Google Scholar 

  • Villard, P. V. and Osborne, P. D. (2002). “Visualization of wave-induced suspension patterns over two-dimensional bedforms.” Sedimentology, Vol. 49, No. 2, pp. 363–378, DOI: 10.1046/j.1365-3091.2002.00448.

    Article  Google Scholar 

  • Vinokur, M. (1983). “On one-dimensional stretching functions for finitedifference calculations.” J. Computational Phys., Vol. 50, No. 2, pp. 215–234, DOI: 10.1016/0021-9991(83)90065-7.

    Article  MathSciNet  MATH  Google Scholar 

  • Wiberg, P. L. and Smith, J. D. (1985). “A theoretical model for saltating grains in water.” J. Geophys. Res., Vol. 90, No. C4, pp. 7341–7354, DOI: 10.1029/JC090iC04p07341.

    Article  Google Scholar 

  • Zedler, E. A. and Street, R. L. (2006). “Sediment transport over ripples in oscillatory flow.” J. Hydraulic Engrg., Vol. 132, No. 2, pp. 180–193, DOI: 10.1061/(ASCE)0733-9429(2006)132:2(180).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Gyu Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y.S., Hwang, J.H. & Park, YG. Sensitivity of suspension pattern of numerically simulated sediments to oscillating periods of channel flows over a rippled bed. KSCE J Civ Eng 21, 1503–1515 (2017). https://doi.org/10.1007/s12205-016-0516-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-0516-3

Keywords

Navigation