Skip to main content
Log in

Macrophage Polarization in Skin Wound Healing: Progress in Biology and Therapeutics

  • Article
  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

The morphological and functional barriers caused by pathological scars are extremely painful for patients. Up to now, pathological scar poses a big unmet medical challenge for plastic surgeons and dermatologists worldwide. Macrophage polarization has shown a non-negligible effect on wound healing and scar formation. However, the role of macrophages in wound healing and pathological scar formation is still controversial. To summarize the latest data on probing biological functions of macrophage polarization in wound healing and scar formation and target macrophages in wound healing, we particularly paid attention to studies on different groups of macrophages, the transition among those groups, and modulators regulating the transition process. A comprehensive understanding of macrophage polarization in wound healing is certain to facilitate the development of new and efficient therapeutic modalities for pathological scar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NEGUT I, GRUMEZESCU V, GRUMEZESCU A. Treatment strategies for infected wounds [J]. Molecules, 2018, 23(9): 2392.

    Article  Google Scholar 

  2. WANG G Q, XIA Z F. Monocyte subsets and their differentiation tendency after burn injury [J]. Frontiers of Medicine, 2013, 7(4): 397–400.

    Article  Google Scholar 

  3. DI BENEDETTO P, RUSCITTI P, VADASZ Z, et al. Macrophages with regulatory functions, a possible new therapeutic perspective in autoimmune diseases [J]. Autoimmunity Reviews, 2019, 18(10): 102369.

    Article  Google Scholar 

  4. TANG S, WAN M, HUANG W, et al. Maresins: Specialized proresolving lipid mediators and their potential role in inflammatory-related diseases [J]. Mediators of Inflammation, 2018, 2018: 2380319.

    Article  Google Scholar 

  5. LIU L, MAO Y, XU B C, et al. Induction of neutrophil extracellular traps during tissue injury: Involvement of STING and Toll-like receptor 9 pathways [J]. Cell Proliferation, 2019, 52(3): e12579.

    Article  Google Scholar 

  6. MANJILI F A, YOUSEFI-AHMADIPOUR A, ARABABADI M K. The roles played by TLR4 in the pathogenesis of multiple sclerosis; A systematic review article [J]. Immunology Letters, 2020, 220: 63–70.

    Article  Google Scholar 

  7. HOU S, LIU Z, SHEN H, et al. Damage-associated molecular pattern-triggered immunity in plants [J]. Frontiers in Plant Science, 2019, 10: 646.

    Article  Google Scholar 

  8. NA Y R, JE S, SEOK S H. Metabolic features of macrophages in inflammatory diseases and cancer [J]. Cancer Letters, 2018, 413: 46–58.

    Article  Google Scholar 

  9. YAGÜE-CAPILLA M, GARCÍA-CABALLERO D, AGUILAR-PEREYRA F, et al. Base excision repair plays an important role in the protection against nitric oxide- and in vivo-induced DNA damage in Trypanosoma brucei [J]. Free Radical Biology and Medicine, 2019, 131: 59–71.

    Article  Google Scholar 

  10. CAMPANA L, STARKEY LEWIS P J, PELLICORO A, et al. The STAT3-IL-10-IL-6 pathway is a novel regulator of macrophage efferocytosis and phenotypic conversion in sterile liver injury [J]. Journal of Immunology, 2018, 200(3): 1169–1187.

    Article  Google Scholar 

  11. OISHI Y, MANABE I. Macrophages in inflammation, repair and regeneration [J]. International Immunology, 2018, 30(11): 511–528.

    Article  Google Scholar 

  12. MARTINEZ F O, GORDON S. The M1 and M2 paradigm of macrophage activation: Time for reassessment [J]. F1000Prime Reports, 2014, 6: 13.

    Article  Google Scholar 

  13. MANTOVANI A, SICA A, SOZZANI S, et al. The chemokine system in diverse forms of macrophage activation and polarization [J]. Trends in Immunology, 2004, 25(12): 677–686.

    Article  Google Scholar 

  14. PEMMARI A, LEPPÄNEN T, PAUKKERI E L, et al. Attenuating effects of nortrachelogenin on IL-4 and IL-13 induced alternative macrophage activation and on bleomycin-induced dermal fibrosis [J]. Journal of Agricultural and Food Chemistry, 2018, 66(51): 13405–13413.

    Article  Google Scholar 

  15. SU S, ZHAO Q, HE C, et al. miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program [J]. Nature Communications, 2015, 6: 8523.

    Article  Google Scholar 

  16. WANG L X, ZHANG S X, WU H J, et al. M2b macrophage polarization and its roles in diseases [J]. Journal of Leukocyte Biology, 2019, 106(2): 345–358.

    Article  Google Scholar 

  17. LAI Y S, PUTRA R B D S, AUI S P, et al. M2C polarization by baicalin enhances efferocytosis via upregulation of MERTK receptor [J]. The American Journal of Chinese Medicine, 2018, 46(8): 1899–1914.

    Article  Google Scholar 

  18. LURIER E B, DALTON D, DAMPIER W, et al. Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing [J]. Immunobiology, 2017, 222(7): 847–856.

    Article  Google Scholar 

  19. ROHANI M G, PARKS W C. Matrix remodeling by MMPs during wound repair [J]. Matrix Biology, 2015, 44/45/46: 113–121.

    Article  Google Scholar 

  20. ARORA S, DEV K, AGARWAL B, et al. Macrophages: Their role, activation and polarization in pulmonary diseases [J]. Immunobiology, 2018, 223(4/5): 383–396.

    Article  Google Scholar 

  21. GUO C, BURANYCH A, SARKAR D, et al. The role of tumor-associated macrophages in tumor vascularization [J]. Vascular Cell, 2013, 5(1): 20.

    Article  Google Scholar 

  22. WYNN T A, VANNELLA K M. Macrophages in tissue repair, regeneration, and fibrosis [J]. Immunity, 2016, 44(3): 450–462.

    Article  Google Scholar 

  23. ITALIANI P, MAZZA E M, LUCCHESI D, et al. Transcriptomic profiling of the development of the inflammatory response in human monocytes in vitro [J]. PLoS One, 2014, 9(2): e87680.

    Article  Google Scholar 

  24. DAVID S, GREENHALGH A D, KRONER A. Macrophage and microglial plasticity in the injured spinal cord [J]. Neuroscience, 2015, 307: 311–318.

    Article  Google Scholar 

  25. YU T, ZHAO L, HUANG X, et al. Enhanced activity of the macrophage M1/M2 phenotypes and phenotypic switch to M1 in periodontal infection [J]. Journal of Periodontology, 2016, 87(9): 1092–1102.

    Article  Google Scholar 

  26. DALEY J M, BRANCATO S K, THOMAY A A, et al. The phenotype of murine wound macrophages [J]. Journal of Leukocyte Biology, 2010, 87(1): 59–67.

    Article  Google Scholar 

  27. KIM H, WANG S Y, KWAK G, et al. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing [J]. Advanced Science, 2019, 6(20): 1900513.

    Article  Google Scholar 

  28. KLUTH D C. Pro-resolution properties of macrophages in renal injury [J]. Kidney International, 2007, 72(3): 234–236.

    Article  Google Scholar 

  29. MITCHELL S, THOMAS G, HARVEY K, et al. Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: Stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo [J]. Journal of the American Society of Nephrology, 2002, 13(10): 2497–2507.

    Article  Google Scholar 

  30. HU M S, WALMSLEY G G, BARNES L A, et al. Delivery of monocyte lineage cells in a biomimetic scaffold enhances tissue repair [J]. JCI Insight, 2017, 2(19): 96260.

    Article  Google Scholar 

  31. CHEN L, DENG H, CUI H, et al. Inflammatory responses and inflammation-associated diseases in organs [J]. Oncotarget, 2018, 9(6): 7204–7218.

    Article  Google Scholar 

  32. MIRZA R, DIPIETRO L A, KOH T J. Selective and specific macrophage ablation is detrimental to wound healing in mice [J]. The American Journal of Pathology, 2009, 175(6): 2454–2462.

    Article  Google Scholar 

  33. ZHANG M Z, YAO B, YANG S, et al. CSF-1 signaling mediates recovery from acute kidney injury [J]. The Journal of Clinical Investigation, 2012, 122(12): 4519–4532.

    Article  Google Scholar 

  34. LUCAS T, WAISMAN A, RANJAN R, et al. Differential roles of macrophages in diverse phases of skin repair [J]. Journal of Immunology, 2010, 184(7): 3964–3977.

    Article  Google Scholar 

  35. HAMED S, BENNETT C L, DEMIOT C, et al. Erythropoietin, a novel repurposed drug: An innovative treatment for wound healing in patients with diabetes mellitus [J]. Wound Repair and Regeneration, 2014, 22(1): 23–33.

    Article  Google Scholar 

  36. LEE J H, KAM E H, KIM S Y, et al. Erythropoietin attenuates postoperative cognitive dysfunction by shifting macrophage activation toward the M2 phenotype [J]. Frontiers in Pharmacology, 2017, 8: 839.

    Article  Google Scholar 

  37. CALEY M P, MARTINS V L C, O’TOOLE E A. Metalloproteinases and wound healing [J]. Advances in Wound Care, 2015, 4(4): 225–234.

    Article  Google Scholar 

  38. MADSEN D H, LEONARD D, MASEDUNSKAS A, et al. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway [J]. The Journal of Cell Biology, 2013, 202(6): 951–966.

    Article  Google Scholar 

  39. WALMSLEY G G, MAAN Z N, WONG V W, et al. Scarless wound healing: Chasing the holy grail [J]. Plastic and Reconstructive Surgery, 2015, 135(3): 907–917.

    Article  Google Scholar 

  40. BROWN J J, BAYAT A. Genetic susceptibility to raised dermal scarring [J]. British Journal of Dermatology, 2009, 161(1): 8–18.

    Article  Google Scholar 

  41. ZHANG J L, QIAO Q, LIU M D, et al. IL-17 promotes scar formation by inducing macrophage infiltration [J]. The American Journal of Pathology, 2018, 188(7): 1693–1702.

    Article  Google Scholar 

  42. GOREN I, ALLMANN N, YOGEV N, et al. A transgenic mouse model of inducible macrophage depletion: Effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes [J]. The American Journal of Pathology, 2009, 175(1): 132–147.

    Article  Google Scholar 

  43. MCWHORTER F Y, DAVIS C T, LIU W F. Physical and mechanical regulation of macrophage phenotype and function [J]. Cellular and Molecular Life Sciences, 2015, 72(7): 1303–1316.

    Article  Google Scholar 

  44. JAIN N, MOELLER J, VOGEL V. Mechanobiology of macrophages: How physical factors coregulate macrophage plasticity and phagocytosis [J]. Annual Review of Biomedical Engineering, 2019, 21: 267–297.

    Article  Google Scholar 

  45. FENG Y, SUN Z L, LIU S Y, et al. Direct and indirect roles of macrophages in hypertrophic scar formation [J]. Frontiers in Physiology, 2019, 10: 1101.

    Article  Google Scholar 

  46. MURRAY L A, ROSADA R, MOREIRA A P, et al. Serum amyloid P therapeutically attenuates murine bleomycin-induced pulmonary fibrosis via its effects on macrophages [J]. PLoS One, 2010, 5(3): e9683.

    Article  Google Scholar 

  47. JIN Q, GUI L, NIU F, et al. Macrophages in keloid are potent at promoting the differentiation and function of regulatory T cells [J]. Experimental Cell Research, 2018, 362(2): 472–476.

    Article  Google Scholar 

  48. KLINKERT K, WHELAN D, CLOVER A J P, et al. Selective M2 macrophage depletion leads to prolonged inflammation in surgical wounds [J]. European Surgical Research, 2017, 58(3/4): 109–120.

    Article  Google Scholar 

  49. TANG P M, NIKOLIC-PATERSON D J, LAN H Y. Macrophages: Versatile players in renal inflammation and fibrosis [J]. Nature Reviews Nephrology, 2019, 15(3): 144–158.

    Article  Google Scholar 

  50. DENG L, HUANG L, GUO Q Y, et al. CREB1 and Smad3 mediate TGF-β3-induced Smad7 expression in rat hepatic stellate cells [J]. Molecular Medicine Reports, 2017, 16(6): 8455–8462.

    Article  Google Scholar 

  51. GIBBONS M A, MACKINNON A C, RAMACHANDRAN P, et al. Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis [J]. American Journal of Respiratory and Critical Care Medicine, 2011, 184(5): 569–581.

    Article  Google Scholar 

  52. WYNN T A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases [J]. The Journal of Clinical Investigation, 2007, 117(3): 524–529.

    Article  Google Scholar 

  53. MORIKAWA M, DERYNCK R, MIYAZONO K. TGF-β and the TGF-β family: Context-dependent roles in cell and tissue physiology [J]. Cold Spring Harbor Perspectives in Biology, 2016, 8(5): a021873.

    Article  Google Scholar 

  54. MENG X M, NIKOLIC-PATERSON D J, LAN H Y. TGF-β: The master regulator of fibrosis [J]. Nature Reviews Nephrology, 2016, 12(6): 325–338.

    Article  Google Scholar 

  55. KLINKHAMMER B M, FLOEGE J, BOOR P. PDGF in organ fibrosis [J]. Molecular Aspects of Medicine, 2018, 62: 44–62.

    Article  Google Scholar 

  56. FORCINA L, MIANO C, SCICCHITANO B M, et al. Signals from the niche: Insights into the role of IGF-1 and IL-6 in modulating skeletal muscle fibrosis [J]. Cells, 2019, 8(3): 232

    Article  Google Scholar 

  57. SHI J, LI J, GUAN H, et al. Anti-fibrotic actions of interleukin-10 against hypertrophic scarring by activation of PI3K/AKT and STAT3 signaling pathways in scar-forming fibroblasts [J]. PLoS One, 2014, 9(5): e98228.

    Article  Google Scholar 

  58. HE T, BAI X Z, JING J, et al. Notch signal deficiency alleviates hypertrophic scar formation after wound healing through the inhibition of inflammation [J]. Archives of Biochemistry and Biophysics, 2020, 682: 108286.

    Article  Google Scholar 

  59. ARNO A I, GAUGLITZ G G, BARRET J P, et al. Up-to-date approach to manage keloids and hypertrophic scars: A useful guide [J]. Burns, 2014, 40(7): 1255–1266.

    Article  Google Scholar 

  60. DARDENNE A D, WULFF B C, WILGUS T A. The alarmin HMGB-1 influences healing outcomes in fetal skin wounds [J]. Wound Repair and Regeneration, 2013, 21(2): 282–291.

    Article  Google Scholar 

  61. LU S W, ZHANG X M, LUO H M, et al. Clodronate liposomes reduce excessive scar formation in a mouse model of burn injury by reducing collagen deposition and TGF-β1 expression [J]. Molecular Biology Reports, 2014, 41(4): 2143–2149.

    Article  Google Scholar 

  62. ZHU Z S, DING J, MA Z S, et al. Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation [J]. Wound Repair and Regeneration, 2016, 24(4): 644–656.

    Article  Google Scholar 

  63. BAECK C, WEI X, BARTNECK M, et al. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C+ macrophage infiltration in mice [J]. Hepatology, 2014, 59(3): 1060–1072.

    Article  Google Scholar 

  64. CHEN L, ZHOU X, FAN L. X, et al. Macrophage migration inhibitory factor promotes cyst growth in polycystic kidney disease [J]. The Journal of Clinical Investigation, 2015, 125(6): 2399–2412.

    Article  Google Scholar 

  65. MURRAY L A, CHEN Q, KRAMER M S, et al. TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P [J]. The International Journal of Biochemistry & Cell Biology, 2011, 43(1): 154–162.

    Article  Google Scholar 

  66. UENO M, MAENO T, NISHIMURA S, et al. Alendronate inhalation ameliorates elastase-induced pulmonary emphysema in mice by induction of apoptosis of alveolar macrophages [J]. Nature Communications, 2015, 6: 6332.

    Article  Google Scholar 

  67. WILLENBORG S, EMING S A. Cellular networks in wound healing [J]. Science, 2018, 362(6417): 891–892.

    Article  Google Scholar 

  68. PEREZ-ASO M, CHIRIBOGA L, CRONSTEIN B N. Pharmacological blockade of adenosine A2A receptors diminishes scarring [J]. The FASEB Journal, 2012, 26(10): 4254–4263.

    Article  Google Scholar 

  69. TREDGET E E, WANG R, SHEN Q, et al. Transforming growth factor-beta mRNA and protein in hypertrophic scar tissues and fibroblasts: Antagonism by IFN-alpha and IFN-gamma in vitro and in vivo [J]. Journal of Interferon & Cytokine Research, 2000, 20(2): 143–151.

    Article  Google Scholar 

  70. DARAKHSHAN S, POUR A B. Tranilast: A review of its therapeutic applications [J]. Pharmacological Research, 2015, 91: 15–28.

    Article  Google Scholar 

  71. WANG R, MAO Y, ZHANG Z, et al. Role of verapamil in preventing and treating hypertrophic scars and keloids [J]. International Wound Journal, 2016, 13(4): 461–468.

    Google Scholar 

  72. YANG S, HUANG S, FENG C, et al. Umbilical cord-derived mesenchymal stem cells: Strategies, challenges, and potential for cutaneous regeneration [J]. Frontiers of Medicine, 2012, 6(1): 41–47.

    Article  Google Scholar 

  73. BAI D S, ZHAO Y, ZHU Q, et al. LZ205, a newly synthesized flavonoid compound, exerts antiinflammatory effect by inhibiting M1 macrophage polarization through regulating PI3K/AKT/mTOR signaling pathway [J]. Experimental Cell Research, 2018, 364(1): 84–94.

    Article  Google Scholar 

  74. CAMILLE N, DEALTRY G. Regulation of M1/M2 macrophage polarization by Sutherlandia frutescens via NFκB and MAPK signaling pathways [J]. South African Journal of Botany, 2018, 116: 42–51.

    Article  Google Scholar 

  75. JI J, XIANG P, LI T, et al. NOSH-NBP, a novel nitric oxide and hydrogen sulfide-releasing hybrid, attenuates ischemic stroke-induced neuroinflammatory injury by modulating microglia polarization [J]. Frontiers in Cellular Neuroscience, 2017, 11: 154.

    Article  Google Scholar 

  76. DUGO L, BELLUOMO M G, FANALI C, et al. Effect of cocoa polyphenolic extract on macrophage polarization from proinflammatory M1 to antiinflammatory M2 state [J]. Oxidative Medicine and Cellular Longevity, 2017, 2017: 6293740.

    Article  Google Scholar 

  77. BISSONNETTE E Y, PROULX L I, TURMEL V, et al. PCT-233, a novel modulator of pro- and anti-inflammatory cytokine production [J]. Clinical & Experimental Immunology, 2004, 135(3): 440–447.

    Article  Google Scholar 

  78. SAKSIDA T, VUJICIC M, NIKOLIC I, et al. Compound A, a selective glucocorticoid receptor agonist, inhibits immunoinflammatory diabetes, induced by multiple low doses of streptozotocin in mice [J]. British Journal of Pharmacology, 2014, 171(24): 5898–5909.

    Article  Google Scholar 

  79. CHANG Y, JIA X, WEI F, et al. CP-25, a novel compound, protects against autoimmune arthritis by modulating immune mediators of inflammation and bone damage [J]. Scientific Reports, 2016, 6: 26239.

    Article  Google Scholar 

  80. ZHONG Y, CHIOU Y S, PAN M H, et al. Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages [J]. Food Chemistry, 2012, 134(2): 742–748.

    Article  Google Scholar 

  81. LIU J, LI K, ZHOU J, et al. Bisperoxovanadium induces M2-type macrophages and promotes functional recovery after spinal cord injury [J]. Molecular Immunology, 2019, 116: 56–62.

    Article  Google Scholar 

  82. ZHANG Y K, WANG J, LIU L, et al. The effect of Lyciumbarbarum on spinal cord injury, particularly its relationship with M1 and M2 macrophage in rats [J]. BMC Complementary and Alternative Medicine, 2013, 13: 67.

    Article  Google Scholar 

  83. LI D, LIU Q Y, SUN W, et al. 1,3,6,7-Tetrahydroxy-8-prenylxanthone ameliorates inflammatory responses resulting from the paracrine interaction of adipocytes and macrophages [J]. British Journal of Pharmacology, 2018, 175(10): 1590–1606.

    Article  Google Scholar 

  84. LI T, PENG M Z, YANG Z Z, et al. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone [J]. Acta Biomaterialia, 2018, 71: 96–107.

    Article  Google Scholar 

  85. FENG X J, QIN H H, SHI Q, et al. Chrysin attenuates inflammation by regulating M1/M2 status via activating PPARγ [J]. Biochemical Pharmacology, 2014, 89(4): 503–514.

    Article  Google Scholar 

  86. XU G, FENG L L, SONG P P, et al. Isomeranzin suppresses inflammation by inhibiting M1 macrophage polarization through the NF-κBand ERKpathway [J]. International Immunopharmacology, 2016, 38: 175–185.

    Article  Google Scholar 

  87. ZHANG X, XU F, LIU L, et al. (+)-Borneol improves the efficacy of edaravone against DSS-induced colitis by promoting M2 macrophages polarization via JAK2-STAT3 signaling pathway [J]. International Immunopharmacology, 2017, 53: 1–10.

    Article  Google Scholar 

  88. PEI Z Y, WANG S H. Sevoflurane suppresses microglial M2 polarization [J]. Neuroscience Letters, 2017, 655: 160–165.

    Article  Google Scholar 

  89. WEN M Y, YE J K, HAN Y L, et al. Hypertonic saline regulates microglial M2 polarization via miR-200b/KLF4 in cerebral edema treatment [J]. Biochemical and Biophysical Research Communications, 2018, 499(2): 345–353.

    Article  Google Scholar 

  90. MEIRELES M, MARQUES C, NORBERTO S, et al. Anthocyanin effects on microglia M1/M2 phenotype: Consequence on neuronal fractalkine expression [J]. Behavioural Brain Research, 2016, 305: 223–228.

    Article  Google Scholar 

  91. FENG X J, WENG D, ZHOU F F, et al. Activation of PPARγ by a natural flavonoid modulator, apigenin ameliorates obesity-related inflammation via regulation of macrophage polarization [J]. EBioMedicine, 2016, 9: 61–76.

    Article  Google Scholar 

  92. YU X M, XU M Y, LI N, et al. β-elemene inhibits tumor-promoting effect of M2 macrophages in lung cancer [J]. Biochemical and Biophysical Research Communications, 2017, 490(2): 514–520.

    Article  Google Scholar 

  93. YANG X D, XU S Q, QIAN Y W, et al. Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury [J]. Brain, Behavior, and Immunity, 2017, 64: 162–172.

    Article  Google Scholar 

  94. IWANOWYCZ S, WANG J, ALTOMARE D, et al. Emodin bidirectionally modulates macrophage polarization and epigenetically regulates macrophage memory [J]. The Journal of Biological Chemistry, 2016, 291(22): 11491–11503.

    Article  Google Scholar 

  95. LARA-GUZMAN O J, TABARES-GUEVARA J H, LEON-VARELA Y M, et al. Proatherogenic macrophage activities are targeted by the flavonoid quercetin [J]. The Journal of Pharmacology and Experimental Therapeutics, 2012, 343(2): 296–306.

    Article  Google Scholar 

  96. CHAN K L, PILLON N J, SIVALOGANATHAN D M, et al. Palmitoleate reverses high fat-induced proinflammatory macrophage polarization via AMP-activated protein kinase (AMPK) [J]. Journal of Biological Chemistry, 2015, 290(27): 16979–16988.

    Article  Google Scholar 

  97. ZHOU E S, LI Y M, YAO M J, et al. Niacin attenuates the production of pro-inflammatory cytokines in LPS-induced mouse alveolar macrophages by HCA2 dependent mechanisms [J]. International Immunopharmacology, 2014, 23(1): 121–126.

    Article  Google Scholar 

  98. KANG C H, JAYASOORIYA R G P T, CHOI Y H, et al. β-Ionone attenuates LPS-induced proinflammatory mediators such as NO, PGE2 and TNF-α in BV2 microglial cells via suppression of the NF-κB and MAPK pathway [J]. Toxicology in Vitro, 2013, 27(2): 782–787.

    Article  Google Scholar 

  99. LAN X, HAN X N, LI Q, et al. Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia [J]. Brain, Behavior, and Immunity, 2017, 61: 326–339.

    Article  Google Scholar 

  100. TALMON M, ROSSI S, PASTORE A, et al. Vortioxetine exerts anti-inflammatory and immunomodulatory effects on human monocytes/macrophages [J]. British Journal of Pharmacology, 2018, 175(1): 113–124.

    Article  Google Scholar 

  101. VELTMAN J D, LAMBERS M E, VAN NIMWEGEN M, et al. Zoledronic acid impairs myeloid differentiation to tumour-associated macrophages in mesothelioma [J]. British Journal of Cancer, 2010, 103(5): 629–641.

    Article  Google Scholar 

  102. KIM S Y, MOON K A, JO H Y, et al. Antiinflammatory effects of apocynin, an inhibitor of NADPH oxidase, in airway inflammation [J]. Immunology and Cell Biology, 2012, 90(4): 441–448.

    Article  Google Scholar 

  103. HART P H, BRAND C, CARSON C F, et al. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes [J]. Inflammation Research, 2000, 49(11): 619–626.

    Article  Google Scholar 

  104. NOGUEIRA M N M, AQUINO S G, ROSSA JUNIOR C, et al. Terpinen-4-ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1β, IL-6 and IL-10 on human macrophages [J]. Inflammation Research, 2014, 63(9): 769–778.

    Article  Google Scholar 

  105. PARK H Y, HAN M H, PARK C, et al. Anti-inflammatory effects of fucoidan through inhibition of NF-κB, MAPK and Akt activation in lipopolysaccharide-induced BV2 microglia cells [J]. Food and Chemical Toxicology, 2011, 49(8): 1745–1752.

    Article  Google Scholar 

  106. LI L, HAMILTON R F, TAYLOR D E, et al. Acrolein-induced cell death in human alveolar macrophages [J]. Toxicology and Applied Pharmacology, 1997, 145(2): 331–339.

    Article  Google Scholar 

  107. KOHNO K, MIYAKE M, SANO O, et al. Anti-inflammatory and immunomodulatory properties of 2-amino-3H-phenoxazin-3-one [J]. Biological & Pharmaceutical Bulletin, 2008, 31(10): 1938–1945.

    Article  Google Scholar 

  108. DONG R, GONG Y L, MENG W, et al. The involvement of M2 macrophage polarization inhibition in fenretinide-mediated chemopreventive effects on colon cancer [J]. Cancer Letters, 2017, 388: 43–53.

    Article  Google Scholar 

  109. GAO S S, ZHOU J, LIU N, et al. Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13 [J]. Journal of Molecular and Cellular Cardiology, 2015, 85: 131–139.

    Article  Google Scholar 

  110. JANG H M, KANG G D, VAN LE T K, et al. 4-Methoxylonchocarpin attenuates inflammation by inhibiting lipopolysaccharide binding to Toll-like receptor of macrophages and M1 macrophage polarization [J]. International Immunopharmacology, 2017, 45: 90–97.

    Article  Google Scholar 

  111. SHI H, ZHENG K, SU Z L, et al. Sinomenine enhances microglia M2 polarization and attenuates inflammatory injury in intracerebral hemorrhage [J]. Journal of Neuroimmunology, 2016, 299: 28–34.

    Article  Google Scholar 

  112. FENG L L, SONG P P, ZHOU H, et al. Pentamethoxyflavanone regulates macrophage polarization and ameliorates sepsis in mice [J]. Biochemical Pharmacology, 2014, 89(1): 109–118.

    Article  Google Scholar 

  113. LU H, WU L F, LIU L P, et al. Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization [J]. Biochemical Pharmacology, 2018, 154: 203–212.

    Article  Google Scholar 

  114. DONG J, ZHANG X, ZHANG L, et al. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: A mechanism including AMPKα1/SIRT1 [J]. Journal of Lipid Research, 2014, 55(3): 363–374.

    Article  Google Scholar 

  115. KIM Y J, PARK W. Anti-inflammatory effect of quercetin on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid [J]. Molecules, 2016, 21(4): 450.

    Article  Google Scholar 

  116. FU J, HUANG J J, LIN M, et al. Quercetin promotes diabetic wound healing via switching macrophages from M1 to M2 polarization [J]. Journal of Surgical Research, 2020, 246: 213–223.

    Article  Google Scholar 

  117. SU F, YI H, XU L, et al. Fluoxetine and S-citalopram inhibit M1 activation and promote M2 activation of microglia in vitro [J]. Neuroscience, 2015, 294: 60–68.

    Article  Google Scholar 

  118. LKHAGVAA B, TANI K J, SATO K, et al. Bestatin, an inhibitor for aminopeptidases, modulates the production of cytokines and chemokines by activated monocytes and macrophages [J]. Cytokine, 2008, 44(3): 386–391.

    Article  Google Scholar 

  119. SOLANKI P, AMINOSHARIAE A, JIN G, et al. The effect of docosahexaenoic acid (DHA) on expression of IL-1β, IL-6, IL-8, and TNF-α in normal and lipopolysaccharide (LPS)-stimulated macrophages [J]. Quintessence International, 2013, 44(6): 393.

    Google Scholar 

  120. JUNG W K, LEE D Y, PARK C, et al. Cilostazol is anti-inflammatory in BV2 microglial cells by inactivating nuclear factor-kappaB and inhibiting mitogen-activated protein kinases [J]. British Journal of Pharmacology, 2010, 159(6): 1274–1285.

    Article  Google Scholar 

  121. QIN C, FAN W H, LIU Q, et al. Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway [J]. Stroke, 2017, 48(12): 3336–3346.

    Article  Google Scholar 

  122. URBÁSKOVÁ P, ÁNDELOVÁ A, TORSOVÁ T, et al. Serratia marcescens as a cause of nosocomial infection in an intensive care unit [J]. VnitrniLekarstvi, 1978, 24(3): 254–259.

    Google Scholar 

  123. MALEK N, POPIOLEK-BARCZYK K, MIKA J, et al. Anandamide, acting via CB2 receptors, alleviates LPS-induced neuroinflammation in rat primary microglial cultures [J]. Neural Plasticity, 2015, 2015: 130639.

    Article  Google Scholar 

  124. SU W J, ZHANG T, JIANG C L, et al. Clemastine alleviates depressive-like behavior through reversing the imbalance of microglia-related pro-inflammatory state in mouse hippocampus [J]. Frontiers in Cellular Neuroscience, 2018, 12: 412.

    Article  Google Scholar 

  125. FENG Q, XU M, YU Y Y, et al. High-dose dexamethasone or all-trans-retinoic acid restores the balance of macrophages towards M2 in immune thrombocytopenia [J]. Journal of Thrombosis and Haemostasis, 2017, 15(9): 1845–1858.

    Article  Google Scholar 

  126. JANG C H, CHOI J H, BYUN M S, et al. Chloroquine inhibits production of TNF-α, IL-1β and IL-6 from lipopolysaccharide-stimulated human mono-cytes/macrophages by different modes [J]. Rheumatology, 2006, 45(6): 703–710.

    Article  Google Scholar 

  127. SONG Y X, DOU H, GONG W, et al. Bis-N-norgliovictin, a small-molecule compound from marine fungus, inhibits LPS-induced inflammation in macrophages and improves survival in sepsis [J]. European Journal of Pharmacology, 2013, 705(1/2/3): 49–60.

    Article  Google Scholar 

  128. ARYANPOUR R, PASBAKHSH P, ZIBARA K, et al. Progesterone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLRP3 inflammasome in a cuprizone-induced demyelination mouse model [J]. International Immunopharmacology, 2017, 51: 131–139.

    Article  Google Scholar 

  129. LIU X, WEN S, YAN F, et al. Salidroside provides neuroprotection by modulating microglial polarization after cerebral ischemia [J]. Journal of Neuroinflammation, 2018, 15(1): 39.

    Article  Google Scholar 

  130. HE L, MARNEROS A G. Doxycycline inhibits polarization of macrophages to the proangiogenic M2-type and subsequent neovascularization [J]. The Journal of Biological Chemistry, 2014, 289(12): 8019–8028.

    Article  Google Scholar 

  131. ZHU Y S, LI X Q, CHEN J Q, et al. The pentacyclic triterpene Lupeol switches M1 macrophages to M2 and ameliorates experimental inflammatory bowel disease [J]. International Immunopharmacology, 2016, 30: 74–84.

    Article  Google Scholar 

  132. ZHU W, JIN Z S, YU J B, et al. Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype [J]. International Immunopharmacology, 2016, 35: 119–126.

    Article  Google Scholar 

  133. KANG S, PARK S J, LEE A Y, et al. Ginsenoside Rg3 promotes inflammation resolution through M2 macrophage polarization [J]. Journal of Ginseng Research, 2018, 42(1): 68–74.

    Article  Google Scholar 

  134. NEOG M K, SULTANA F, RASOOL M. Targeting RAW 264.7 macrophages (M1 type) with Withaferin-A decorated mannosylated liposomes induces repolarization via downregulation of NF-κB and controlled elevation of STAT-3 [J]. International Immunopharmacology, 2018, 61: 64–73.

    Article  Google Scholar 

  135. WANG S X, WANG F J, YANG H Y, et al. Diosgenin glucoside provides neuroprotection by regulating microglial M1 polarization [J]. International Immunopharmacology, 2017, 50: 22–29.

    Article  Google Scholar 

  136. KO H J, LO C Y, WANG B J, et al. Theaflavin-3, 3’-digallate, a black tea polyphenol, attenuates adipocyte-activated inflammatory response of macrophage associated with the switch of M1/M2-like phenotype [J]. Journal of Functional Foods, 2014, 11: 36–48.

    Article  Google Scholar 

  137. LUO X Q, LI A, YANG X, et al. Paeoniflorin exerts neuroprotective effects by modulating the M1/M2 subset polarization of microglia/macrophages in the hippocampal CA1 region of vascular dementia rats via cannabinoid receptor 2 [J]. Chinese Medicine, 2018, 13: 14.

    Article  Google Scholar 

  138. AMANTEA D, CERTO M, PETRELLI F, et al. Azithromycin protects mice against ischemic stroke injury by promoting macrophage transition towards M2 phenotype [J]. Experimental Neurology, 2016, 275: 116–125.

    Article  Google Scholar 

  139. PAN J, JIN J L, GE H M, et al. Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPARκ-dependent manner [J]. Journal of Neuroinflammation, 2015, 12: 1–11.

    Article  Google Scholar 

  140. LIU X X, LI J, PENG X H, et al. Geraniin inhibits LPS-induced THP-1 macrophages switching to M1 phenotype via SOCS1/NF-κB pathway [J]. Inflammation, 2016, 39(4): 1421–1433.

    Article  Google Scholar 

  141. PLASTIRA I, BERNHART E, GOERITZER M, et al. 1-Oleyl-lysophosphatidic acid (LPA) promotes polarization of BV-2 and primary murine microglia towards an M1-like phenotype [J]. Journal of Neuroinflammation, 2016, 13(1): 205.

    Article  Google Scholar 

  142. ZHANG X, ZHOU M, GUO Y, et al. 1,25-dihydroxyvitamin D3 promotes high glucose-induced M1 macrophage switching to M2 via the VDRPPARγ signaling pathway [J]. BioMed Research International, 2015, 2015: 157834.

    Google Scholar 

  143. FIORCARI S, MAFFEI R, AUDRITO V, et al. Ibrutinib modifies the function of monocyte/macrophage population in chronic lymphocytic leukemia [J]. Oncotarget, 2016, 7(40): 65968–65981.

    Article  Google Scholar 

  144. ROSENSON R S, TANGNEY C C, CASEY L C. Inhibition of proinflammatory cytokine production by pravastatin [J]. The Lancet, 1999, 353(9157): 983–984.

    Article  Google Scholar 

  145. JUNG S, SIGLIENTI I, GRAUER O, et al. Induction of IL-10 in rat peritoneal macrophages and dendritic cells by glatiramer acetate [J]. Journal of Neuroimmunology, 2004, 148(1/2): 63–73.

    Article  Google Scholar 

  146. JIANG M, LIU X H, ZHANG D H, et al. Celastrol treatment protects against acute ischemic stroke-induced brain injury by promoting an IL-33/ST2 axis-mediated microglia/macrophage M2 polarization [J]. Journal of Neuroinflammation, 2018, 15(1): 1–12.

    Article  Google Scholar 

  147. GARCÍA J E L, RODRÍGUEZ F M, LÓPEZ A J, et al. Effect of cyclosporin A on inflammatory cytokine production by human alveolar macrophages [J]. Respiratory Medicine, 1998, 92(5): 722–728.

    Article  Google Scholar 

  148. SCHILLING E, WEISS R, GRAHNERT A, et al. Molecular mechanism of LPS-induced TNF-α biosynthesis in polarized human macrophages [J]. Molecular Immunology, 2018, 93: 206–215.

    Article  Google Scholar 

  149. GENSEL J C, ZHANG B. Macrophage activation and its role in repair and pathology after spinal cord injury [J]. Brain Research, 2015, 1619: 1–11.

    Article  Google Scholar 

  150. HALSTEAD E S, UMSTEAD T M, DAVIES M L, et al. GM-CSF overexpression after influenza a virus infection prevents mortality and moderates M1-like airway monocyte/macrophage polarization [J]. Respiratory Research, 2018, 19(1): 3.

    Article  Google Scholar 

  151. MANTOVANI A, VECCHI A, ALLAVENA P. Pharmacological modulation of monocytes and macrophages [J]. Current Opinion in Pharmacology, 2014, 17: 38–44.

    Article  Google Scholar 

  152. HAMZEI TAJ S, LE BLON D, HOORNAERT C, et al. Targeted intracerebral delivery of the anti-inflammatory cytokine IL13 promotes alternative activation of both microglia and macrophages after stroke [J]. Journal of Neuroinflammation, 2018, 15(1): 174.

    Article  Google Scholar 

  153. FERNANDO M R, REYES J L, IANNUZZI J, et al. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages [J]. PLoS One, 2014, 9(4): e94188.

    Article  Google Scholar 

  154. KUROWSKA-STOLARSKA M, STOLARSKI B, KEWIN P, et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation [J]. Journal of Immunology, 2009, 183(10): 6469–6477.

    Article  Google Scholar 

  155. KOBORI T, HAMASAKI S, KITAURA A, et al. Interleukin-18 amplifies macrophage polarization and morphological alteration, leading to excessive angiogenesis [J]. Frontiers in Immunology, 2018, 9: 334.

    Article  Google Scholar 

  156. LUO B, WANG J, LIU Z, et al. Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution [J]. Nature Communications, 2016, 7: 12177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Zhang  (张建明).

Additional information

Foundation item: the National Natural Science Foundation of China (No. 81701907), and the Pujiang Program of SSTC (No. 18PJ1407100)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Cheng, L., Chen, T. et al. Macrophage Polarization in Skin Wound Healing: Progress in Biology and Therapeutics. J. Shanghai Jiaotong Univ. (Sci.) 27, 264–280 (2022). https://doi.org/10.1007/s12204-021-2276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-021-2276-6

Key words

CLC number

Document code

Navigation