Skip to main content
Log in

Pathologic Shear and Elongation Rates Do Not Cause Cleavage of Von Willebrand Factor by ADAMTS13 in a Purified System

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Pathological flows in patients with severe aortic stenosis are associated with acquired von Willebrand syndrome. This syndrome is characterized by excessive cleavage of von Willebrand factor by its main protease, A Disintegrin and Metalloproteinase with a Thrombospondin Type 1 Motif, Member 13 (ADAMTS13) leading to decreased VWF function and mucocutaneous bleeding. Aortic valve replacement and correction of the flow behavior to physiological levels reverses the syndrome, supporting the association between pathological flow and acquired von Willebrand syndrome. We investigated the effects of shear and elongational rates on von Willebrand factor cleavage in the presence of ADAMTS13.

Methods

We identified acquired von Willebrand syndrome in five patients with severe aortic stenosis. Doppler echography values from these patients were used to develop three computational fluid dynamic (CFD) aortic valve models (normal, mild and severe stenosis). Shear, elongational rates and exposure times identified in the CFD simulations were used as parameters for the design of microfluidic devices to test the effects of pathologic shear and elongational rates on the structure and function of von Willebrand factor.

Results

The shear rates (0–10,000s−1), elongational rates (0–1000 s−1) and exposure times (1–180 ms) tested in our microfluidic designs mimicked the flow features identified in patients with aortic stenosis. The shear and elongational rates tested in vitro did not lead to excessive cleavage or decreased function of von Willebrand factor in the presence of the protease.

Conclusions

High shear and elongational rates in the presence of ADAMTS13 are not sufficient for excessive cleavage of von Willebrand Factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Amindari, A., L. Saltik, K. Kirkkopru, M. Yacoub, and H. C. Yalcin. Assessment of calcified aortic valve leaflet deformations and blood flow dynamics using fluid-structure interaction modeling. Inform. Med. Unlocked. 9:191–199, 2017.

    Google Scholar 

  2. Amindari, A., L. Saltik, K. Kirkkopru, M. Yacoub, and H. C. Yalcin. Informatics in medicine unlocked assessment of calcified aortic valve leaflet deformations and blood flow dynamics using fluid-structure interaction modeling. Inform. Med. Unlocked. 9(July):191–199, 2017.

    Google Scholar 

  3. Anderson, P. J., K. Kokame, and J. E. Sadler. Zinc and calcium ions cooperatively modulate ADAMTS13 activity. J Biol Chem. 281(2):850–857, 2006.

    Google Scholar 

  4. Baldauf, C., R. Schneppenheim, W. Stacklies, et al. Shear-induced unfolding activates von Willebrand factor A2 domain for proteolysis. J. Thromb. Haemost. 7(12):2096–2105, 2009.

    Google Scholar 

  5. Barker, A. J., P. van Ooij, K. Bandi, et al. Viscous energy loss in the presence of abnormal aortic flow. Magn. Reson. Med. 72(3):620–628, 2014.

    Google Scholar 

  6. Baumgartner, H., H. Kratzer, G. Helmreich, and P. Kuehn. Determination of aortic valve area by doppler echocardiography using the continuity equation: a critical evaluation. Cardiology. 77(2):101–111, 1990.

    Google Scholar 

  7. Bavo, A. M., G. Rocatello, F. Iannaccone, J. Degroote, J. Vierendeels, and P. Segers. Fluid-structure interaction simulation of prosthetic aortic valves: comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation. PLoS ONE. 11(4):e0154517, 2016.

    Google Scholar 

  8. Blackshear, J. L., E. M. Wysokinska, R. E. Safford, et al. Indices of von Willebrand factor as biomarkers of aortic stenosis severity: (from the biomarkers of aortic stenosis severity [bass] study). Am. J. Cardiol. 111(3):374–381, 2013.

    Google Scholar 

  9. Blom, J. A. Monitoring of Respiration and Circulation. Boston: CRC Press, 2003.

    Google Scholar 

  10. Bluestein, D., and S. Einav. The effect of varying degrees of stenosis on the characteristics of turbulent pulsatile flow through heart valves. J. Biomech. 28(8):915–924, 1995.

    Google Scholar 

  11. Bluestein, D., L. Niu, R. T. Schoephoerster, and M. K. Dewanjee. Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann. Biomed. Eng. 25(2):344, 1997.

    Google Scholar 

  12. Bortot, M., K. Ashworth, A. Sharifi, et al. Turbulent flow promotes cleavage of VWF (von Willebrand Factor) by ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type-1 motif, member 13). Arterioscler. Thromb. Vasc. Biol. 2019. https://doi.org/10.1161/ATVBAHA.119.312814.

    Article  Google Scholar 

  13. Budde, U., R. Schneppenheim, J. Eikenboom, et al. Detailed von Willebrand factor multimer analysis in patients with von Willebrand disease in the European study, molecular and clinical markers for the diagnosis and management of type 1 von Willebrand disease (MCMDM-1VWD). J. Thromb. Haemost. 6(5):762–771, 2008.

    Google Scholar 

  14. Cao, W., S. Krishnaswamy, R. M. Camire, P. J. Lenting, and X. L. Zheng. Factor VIII accelerates proteolytic cleavage of von Willebrand factor by ADAMTS13. Proc. Natl. Acad. Sci. USA 105(21):7416–7421, 2008.

    Google Scholar 

  15. Chandra, S., N. M. Rajamannan, and P. Sucosky. Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech. Model Mechanobiol. 11(7):1085–1096, 2012.

    Google Scholar 

  16. Chen, D., C. S. Thomas, and J. L. Blackshear. Predictors of ccquired Von Willebrand syndrome in patients with aortic stenosis. Blood. 118(21):3318–3318, 2015.

    Google Scholar 

  17. Clendenen, N., A. Tollefson, M. Dzieciatkowska, et al. Correlation of pre-operative plasma protein concentrations in cardiac surgery patients with bleeding outcomes using a targeted quantitative proteomics approach. Proteomics Clin. Appl. 1:1, 2017. https://doi.org/10.1002/prca.201600175.

    Article  Google Scholar 

  18. Crawley, J. T. B., R. de Groot, Y. Xiang, B. M. Luken, and D. A. Lane. Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. Blood. 118(12):3212–3221, 2011.

    Google Scholar 

  19. Dent, J. A., S. D. Berkowitz, J. Ware, C. K. Kasper, and Z. M. Ruggeri. Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor. Proc. Natl. Acad. Sci. USA 87(16):6306–6310, 1990.

    Google Scholar 

  20. Dent, J. A., M. Galbusera, and Z. M. Ruggeri. Heterogeneity of plasma von willebrand factor multimers resulting from proteolysis of the constituent subunit. J. Clin. Invest. 88(3):774–782, 1991.

    Google Scholar 

  21. Feys, H. B., P. J. Anderson, K. Vanhoorelbeke, E. M. Majerus, and J. E. Sadler. Multi-step binding of ADAMTS13 to VWF. J. Thromb. Haemost. 2009. https://doi.org/10.1111/j.1538-7836.2009.03620.x.

    Article  Google Scholar 

  22. Feys, H. B., P. J. Anderson, K. Vanhoorelbeke, E. M. Majerus, and J. E. Sadler. Multi-step binding of ADAMTS-13 to von Willebrand factor. J. Thromb. Haemost. 7(12):2088–2095, 2009.

    Google Scholar 

  23. Frank, R. D., R. Lanzmich, P. K. Haager, and U. Budde. Severe aortic valve stenosis: sustained cure of acquired von willebrand syndrome after surgical valve replacement. Clin. Appl. Thromb. 23(3):229–234, 2016.

    Google Scholar 

  24. Fu, H., Y. Jiang, D. Yang, F. Scheiflinger, W. P. Wong, and T. A. Springer. Flow-induced elongation of von Willebrand factor precedes tension-dependent activation. Nat. Commun. 8(1):324, 2017.

    Google Scholar 

  25. Grimard, B. H., and J. M. Larson. Aortic stenosis: diagnosis and treatment. Am. Fam. Physician. 78(6):717–724, 2008.

    Google Scholar 

  26. Ha, H., J. Lantz, M. Ziegler, et al. Estimating the irreversible pressure drop across a stenosis by quantifying turbulence production using 4D Flow MRI. Sci. Rep. 7:46618, 2017.

    Google Scholar 

  27. Han, Y., J. Xiao, E. Falls, and X. L. Zheng. A shear-based assay for assessing plasma ADAMTS13 activity and inhibitor in patients with thrombotic thrombocytopenic purpura. Transfusion. 51(7):1580–1591, 2011.

    Google Scholar 

  28. Jhun, C.-S., C. Siedlecki, L. Xu, et al. Stress and exposure time on von Willebrand factor degradation. Artif. Organs. 43(2):199–206, 2019.

    Google Scholar 

  29. Kleiman, N. S., and M. J. Reardon. Von Willebrand factor, paravalvular leak, and a new vista for TAVR. J. Thorac. Dis. 8(10):E1337–E1339, 2016.

    Google Scholar 

  30. Kokame, K., Y. Nobe, Y. Kokubo, A. Okayama, and T. Miyata. FRETS-VWF73, a first fluorogenic substrate for ADAMTS13 assay. Br. J. Haematol. 129(1):93–100, 2005.

    Google Scholar 

  31. Larson, J. W., G. R. Yantz, Q. Zhong, et al. Single DNA molecule stretching in sudden mixed shear and elongational microflows. Lab. Chip. 6(9):1187–1199, 2006.

    Google Scholar 

  32. Lasne, D., C. Dey, M.-D. Dautzenberg, et al. Screening for von Willebrand disease: contribution of an automated assay for von Willebrand factor activity. Haemophilia 18(3):e158–e163, 2012.

    Google Scholar 

  33. Li, Y., K.-W. Hsiao, C. A. Brockman, et al. When ends meet: circular DNA stretches differently in elongational flows. Macromolecules. 48(16):5997–6001, 2015.

    Google Scholar 

  34. Majerus, E. M., P. J. Anderson, and J. E. Sadler. Binding of ADAMTS13 to von Willebrand Factor. J. Biol. Chem. 280(23):21773–21778, 2005.

    Google Scholar 

  35. Majerus, E. M., X. Zheng, E. A. Tuley, and J. E. Sadler. Cleavage of the ADAMTS13 propeptide is not required for protease activity. J. Biol. Chem. 278(47):46643–46648, 2003.

    Google Scholar 

  36. Maxwell, M. J., S. M. Dopheide, S. J. Turner, and S. P. Jackson. Shear induces a unique series of morphological changes in translocating platelets. Arterioscler. Thromb. Vasc. Biol. 26(3):663–669, 2006.

    Google Scholar 

  37. Meyer, D., and J. P. Girma. Von-willebrand-factor - structure and function. Thromb. Haemost. 70(1):99–104, 1993.

    Google Scholar 

  38. Morabito, M., C. Dong, W. Wei, et al. Internal tensile force and A2 domain unfolding of von Willebrand factor multimers in shear flow. Biophys. J. 115(10):1860–1871, 2018.

    Google Scholar 

  39. Neeves, K. B., S. F. Maloney, K. P. Fong, et al. Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates. J. Thromb. Haemost. 6(12):2193–2201, 2008.

    Google Scholar 

  40. Ng, C. J., K. R. McCrae, K. Ashworth, et al. Effects of anti-β2GPI antibodies on VWF release from human umbilical vein endothelial cells and ADAMTS13 activity. Res. Pract. Thromb. Haemost. 2(2):380–389, 2018.

    Google Scholar 

  41. Nishimura, R. A., C. M. Otto, R. O. Bonow, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 129(23):2440–2492, 2014.

    Google Scholar 

  42. Ober, T. J., S. J. Haward, C. J. Pipe, J. Soulages, and G. H. McKinley. Microfluidic extensional rheometry using a hyperbolic contraction geometry. Rheol. Acta. 52(6):529–546, 2013.

    Google Scholar 

  43. Sagheer, S., S. Rodgers, O. Yacoub, R. Dauer, S. Mcrae, and E. Duncan. Comparison of von Willebrand factor (VWF) activity levels determined by HemosIL AcuStar assay and HemosIL LIA assay with ristocetin cofactor assay by aggregometry. Haemophilia. 22(3):e200–e207, 2016.

    Google Scholar 

  44. Schneider, S. W., S. Nuschele, A. Wixforth, et al. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc. Natl. Acad. Sci. USA 104(19):7899–7903, 2007.

    Google Scholar 

  45. Sedaghat, A., H. Kulka, J.-M. Sinning, et al. Transcatheter aortic valve implantation leads to a restoration of von Willebrand factor (VWF) abnormalities in patients with severe aortic stenosis – Incidence and relevance of clinical and subclinical VWF dysfunction in patients undergoing transfemoral T. Thromb. Res. 151:23–28, 2017.

    Google Scholar 

  46. Sharifi, A., and H. Niazmand. Analysis of flow and LDL concentration polarization in siphon of internal carotid artery: non-Newtonian effects. Comput. Biol. Med. 65:93–102, 2015.

    Google Scholar 

  47. Shim, K., P. J. Anderson, E. A. Tuley, E. Wiswall, and Sadler. J. Evan. Platelet-VWF complexes are preferred substrates of ADAMTS13 under fluid shear stress. Blood. 111(2):651–657, 2008.

    Google Scholar 

  48. Siediecki, C. A., B. J. Lestini, K. K. Kottke-Marchant, S. J. Eppell, D. L. Wilson, and R. E. Marchant. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood. 88(8):2939–2950, 1996.

    Google Scholar 

  49. Sing, C. E., and A. Alexander-Katz. Elongational flow induces the unfolding of von Willebrand factor at physiological flow rates. Biophys. J. 98(9):L35–L37, 2010.

    Google Scholar 

  50. Singh, I., E. Themistou, L. Porcar, and S. Neelamegham. Fluid shear induces conformation change in human blood protein von willebrand factor in solution. Biophys. J. 96(6):2313–2320, 2009.

    Google Scholar 

  51. Skipwith, C. G., W. Cao, and X. L. Zheng. Factor VIII and platelets synergistically accelerate cleavage of von Willebrand factor by ADAMTS13 under fluid shear stress. J. Biol. Chem. 285(37):28596–28603, 2010.

    Google Scholar 

  52. Solomon, C., U. Budde, S. Schneppenheim, et al. Acquired type 2A von Willebrand syndrome caused by aortic valve disease corrects during valve surgery. Br. J. Anaesth. 106(4):494–500, 2011.

    Google Scholar 

  53. Sousa, P. C., F. T. Pinho, M. S. N. Oliveira, and M. A. Alves. Extensional flow of blood analog solutions in microfluidic devices. Biomicrofluidics. 5(1):14108, 2011.

    Google Scholar 

  54. South, K., B. M. Luken, J. T. B. Crawley, et al. Conformational activation of ADAMTS13. Proc. Natl. Acad. Sci. 111(52):18578–18583, 2014.

    Google Scholar 

  55. Spangenberg, T., U. Budde, D. Schewel, et al. Treatment of acquired von willebrand syndrome in aortic stenosis with transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 8(5):692–700, 2015.

    Google Scholar 

  56. Stockschlaeder, M., R. Schneppenheim, and U. Budde. Update on von Willebrand factor multimers: focus on high-molecular-weight multimers and their role in hemostasis. Blood Coagul. Fibrinolysis. 25(3):206–216, 2014.

    Google Scholar 

  57. Su, B., L. Zhong, X.-K. Wang, et al. Numerical simulation of patient-specific left ventricular model with both mitral and aortic valves by FSI approach. Comput. Methods Programs Biomed. 113(2):474–482, 2014.

    Google Scholar 

  58. Thubrikar, M. J. The Aortic Valve. London: Taylor & Francis, 1989.

    Google Scholar 

  59. Van Belle, E., A. Rauch, A. Vincentelli, et al. von Willebrand factor as a biological sensor of blood flow to monitor percutaneous aortic valve interventions. Circ. Res. 116(7):1193–1201, 2015.

    Google Scholar 

  60. Vincentelli, A., S. Susen, T. Le Tourneau, et al. Acquired von Willebrand Syndrome in Aortic Stenosis. N. Engl. J. Med. 349(4):343–349, 2003.

    Google Scholar 

  61. Xiang, Y., R. de Groot, J. T. B. Crawley, and D. A. Lane. Mechanism of von Willebrand factor scissile bond cleavage by a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13). Proc. Natl. Acad. Sci. 108(28):11602–11607, 2011.

    Google Scholar 

  62. Xu, A. J., and T. A. Springer. Calcium stabilizes the von Willebrand factor A2 domain by promoting refolding. Proc. Natl. Acad. Sci. USA 109(10):3742–3747, 2012.

    Google Scholar 

  63. Zhang, X., K. Halvorsen, C.-Z. Zhang, W. P. Wong, and T. A. Springer. Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand Factor. Science (80-) 324(5932):1330–1334, 2009.

    Google Scholar 

  64. Zhou, M., X. Dong, C. Baldauf, et al. A novel calcium-binding site of von Willebrand factor A2 domain regulates its cleavage by ADAMTS13. Blood 117(17):4623–4631, 2011.

    Google Scholar 

  65. Zografos, K., F. Pimenta, M. A. Alves, and M. S. N. Oliveira. Microfluidic converging/diverging channels optimised for homogeneous extensional deformation. Biomicrofluidics 10(4):043508, 2016.

    Google Scholar 

Download references

Funding

This work was supported in part by American Heart Association Pre-Doctoral Fellowship (18PRE33990253), the National Institutes of Health (R01 HL120728 and R01 HL141794) the National Science Foundation (1762705) and by an award from the American Heart Association (18CDA34110134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Di Paola.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortot, M., Sharifi, A., Ashworth, K. et al. Pathologic Shear and Elongation Rates Do Not Cause Cleavage of Von Willebrand Factor by ADAMTS13 in a Purified System. Cel. Mol. Bioeng. 13, 379–390 (2020). https://doi.org/10.1007/s12195-020-00631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-020-00631-2

Keywords

Navigation