Skip to main content
Log in

Mouse Keratinocytes Without Keratin Intermediate Filaments Demonstrate Substrate Stiffness Dependent Behaviors

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Traditionally thought to serve active vs. passive mechanical functions, respectively, a growing body of evidence suggests that actin microfilament and keratin intermediate filament (IF) networks, together with their associated cell–cell and cell–matrix anchoring junctions, may have a large degree of functional interdependence. Therefore, we hypothesized that the loss of keratin IFs in a knockout mouse keratinocyte model would affect the kinematics of colony formation, i.e., the spatiotemporal process by which individual cells join to form colonies and eventually a nascent epithelial sheet.

Methods

Time-lapse imaging and deformation tracking microscopy was used to observe colony formation for both wild type (WT) and keratin-deficient knockout (KO) mouse keratinocytes over 24 h. Cells were cultured under high calcium conditions on collagen-coated substrates with nominal stiffnesses of ~ 1.2 kPa (soft) and 24 kPa (stiff). Immunofluorescent staining of actin and selected adhesion proteins was also performed.

Results

The absence of keratin IFs markedly affected cell morphology, spread area, and cytoskeleton and adhesion protein organization on both soft and stiff substrates. Strikingly, an absence of keratin IFs also significantly reduced the ability of mouse keratinocytes to mechanically deform the soft substrate. Furthermore, KO cells formed colonies more efficiently on stiff vs. soft substrates, a behavior opposite to that observed for WT keratinocytes.

Conclusions

Collectively, these data are strongly supportive of the idea that an interdependence between actin microfilaments and keratin IFs does exist, while further suggesting that keratin IFs may represent an important and under-recognized component of keratinocyte mechanosensation and the force generation apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Achterberg, V. F., et al. The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function. J. Investig. Dermatol. 134(7):1862–1872, 2014.

    Article  Google Scholar 

  2. Aghvami, M., K. Billiar, and E. A. Sander. Fiber network models predict enhanced cell mechanosensing on fibrous gels. ASME J. Biomech. Eng. 138(10):101006, 2016.

    Article  Google Scholar 

  3. Bordeleau, F., et al. Keratin 8/18 regulation of cell stiffness-extracellular matrix interplay through modulation of Rho-mediated actin cytoskeleton dynamics. PLoS ONE 7(6):e38780, 2012.

    Article  Google Scholar 

  4. Brennan, J. K., et al. Improved methods for reducing calcium and magnesium concentrations in tissue culture medium: application to studies of lymphoblast proliferation in vitro. In Vitro 11(6):354–360, 1975.

    Article  Google Scholar 

  5. Broussard, J. A., et al. The desmoplakin/intermediate filament linkage regulates cell mechanics. Mol. Biol. Cell 28:3156–3164, 2017.

    Article  Google Scholar 

  6. Charras, G., and E. Sahai. Physical influences of the extracellular environment on cell migration. Nat. Rev. Mol. Cell Biol. 15(12):813, 2014.

    Article  Google Scholar 

  7. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143, 2005.

    Article  Google Scholar 

  8. Eckes, B., et al. Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J. Cell Sci. 111(13):1897–1907, 1998.

    Google Scholar 

  9. Engler, A. J., et al. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.

    Article  Google Scholar 

  10. Georges, P. C., and P. A. Janmey. Cell type-specific response to growth on soft materials. J. Appl. Physiol. 98(4):1547–1553, 2005.

    Article  Google Scholar 

  11. Goffin, J. M., et al. Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J. Cell Biol. 172(2):259–268, 2006.

    Article  Google Scholar 

  12. Goldman, R. D., et al. The function of intermediate filaments in cell shape and cytoskeletal integrity. J. Cell Biol. 134(4):971–983, 1996.

    Article  Google Scholar 

  13. Green, K. J., et al. The relationship between intermediate filaments and microfilaments before and during the formation of desmosomes and adherens-type junctions in mouse epidermal keratinocytes. J. Cell Biol. 104(5):1389–1402, 1987.

    Article  Google Scholar 

  14. Hamill, K. J., et al. BPAG1e maintains keratinocyte polarity through beta4 integrin-mediated modulation of Rac1 and cofilin activities. Mol. Biol. Cell 20(12):2954–2962, 2009.

    Article  Google Scholar 

  15. Haupt, A., and N. Minc. How cells sense their own shape—mechanisms to probe cell geometry and their implications in cellular organization and function. J. Cell Sci. 131(6):jcs214015, 2018.

    Article  Google Scholar 

  16. Homberg, M., et al. Distinct impact of two keratin mutations causing epidermolysis bullosa simplex on keratinocyte adhesion and stiffness. J. Investig. Dermatol. 135(10):2437–2445, 2015.

    Article  Google Scholar 

  17. Hopkinson, S. B., et al. Focal contact and hemidesmosomal proteins in keratinocyte migration and wound repair. Adv. Wound Care 3(3):247–263, 2014.

    Article  Google Scholar 

  18. Hytönen, V. P., and B. Wehrle-Haller. Mechanosensing in cell–matrix adhesions—converting tension into chemical signals. Exp. Cell Res. 343(1):35–41, 2016.

    Article  Google Scholar 

  19. Janostiak, R., et al. Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur. J. Cell Biol. 93(10–12):445–454, 2014.

    Article  Google Scholar 

  20. Kröger, C., et al. Keratins control intercellular adhesion involving PKC-α–mediated desmoplakin phosphorylation. J. Cell Biol. 201(5):681–692, 2013.

    Article  Google Scholar 

  21. Kumar, V., et al. A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity. J. Cell Biol. 211(5):1057–1075, 2015.

    Article  Google Scholar 

  22. Levental, I., P. C. Georges, and P. A. Janmey. Soft biological materials and their impact on cell function. Soft Matter 3(3):299–306, 2007.

    Article  Google Scholar 

  23. Lewis, J. E., P. J. Jensen, and M. J. Wheelock. Cadherin function is required for human keratinocytes to assemble desmosomes and stratify in response to calcium. J. Investig. Dermatol. 102(6):870–877, 1994.

    Article  Google Scholar 

  24. Loschke, F., M. Homberg, and T. M. Magin. Keratin isotypes control desmosome stability and dynamics through PKCalpha. J. Investig. Dermatol. 136(1):202–213, 2016.

    Article  Google Scholar 

  25. Mercurio, A. M., and I. Rabinovitz. Towards a mechanistic understanding of tumor invasion—lessons from the α6β4 integrin. Semin. Cancer Biol. 11(2):129–141, 2001.

    Article  Google Scholar 

  26. Nekrasova, O., et al. Desmosomal cadherin association with Tctex-1 and cortactin-Arp2/3 drives perijunctional actin polymerization to promote keratinocyte delamination. Nat. Commun. 9(1):1053, 2018.

    Article  Google Scholar 

  27. Ozawa, T., et al. Dynamic relationship of focal contacts and hemidesmosome protein complexes in live cells. J. Investig. Dermatol. 130(6):1624–1635, 2010.

    Article  Google Scholar 

  28. Parsons, J. T., A. R. Horwitz, and M. A. Schwartz. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11(9):633, 2010.

    Article  Google Scholar 

  29. Pastar, I., et al. Epithelialization in wound healing: a comprehensive review. Adv. Wound Care 3(7):445–464, 2014.

    Article  Google Scholar 

  30. Pelham, Jr., R. J., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94(25):13661–13665, 1997.

    Article  Google Scholar 

  31. Raghupathy, R., et al. Identification of regional mechanical anisotropy in soft tissue analogs. J. Biomech. Eng. 133(9):091011, 2011.

    Article  Google Scholar 

  32. Ramms, L., et al. Keratins as the main component for the mechanical integrity of keratinocytes. Proc. Natl. Acad. Sci. USA 110(46):18513–18518, 2013.

    Article  Google Scholar 

  33. Rudnicki, M. S., et al. Nonlinear strain stiffening is not sufficient to explain how far cells can feel on fibrous protein gels. Biophys. J. 105(1):11–20, 2013.

    Article  Google Scholar 

  34. Saha, K., et al. Substrate modulus directs neural stem cell behavior. Biophys. J. 95(9):4426–4438, 2008.

    Article  Google Scholar 

  35. Schwartz, M. A. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb. Perspect. Biol. 2(12):a005066, 2010.

    Article  Google Scholar 

  36. Sehgal, B. U., et al. Integrin beta4 regulates migratory behavior of keratinocytes by determining laminin-332 organization. J. Biol. Chem. 281(46):35487–35498, 2006.

    Article  Google Scholar 

  37. Selby, J.C., Mechanobiology of epidermal keratinocytes: desmosomes, hemidesmosomes, keratin intermediate filaments, and blistering skin diseases. In: Mechanobiology of Cell-Cell and Cell-Matrix Interactions. New York: Springer, pp. 169–210, 2011.

  38. Seltmann, K., et al. Keratins significantly contribute to cell stiffness and impact invasive behavior. Proc. Natl. Acad. Sci. USA 110(46):18507–18512, 2013.

    Article  Google Scholar 

  39. Tang, X., et al. A novel cell traction force microscopy to study multi-cellular system. PLoS Comput. Biol. 10(6):e1003631, 2014.

    Article  Google Scholar 

  40. Trappmann, B., et al. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11(7):642–649, 2012.

    Article  Google Scholar 

  41. Tsuruta, D., et al. Hemidesmosomes and focal contact proteins: Functions and cross-talk in keratinocytes, bullous diseases and wound healing. J. Dermatol. Sci. 62(1):1–7, 2011.

    Google Scholar 

  42. Vijayaraj, P., et al. Keratins regulate protein biosynthesis through localization of GLUT1 and -3 upstream of AMP kinase and Raptor. J. Cell Biol. 187(2):175–184, 2009.

    Article  Google Scholar 

  43. Wang, H. B., M. Dembo, and Y. L. Wang. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell Physiol. 279(5):C1345–C1350, 2000.

    Article  Google Scholar 

  44. Wang, N., and D. Stamenovic. Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am. J. Physiol. Cell Physiol. 279(1):C188–C194, 2000.

    Article  Google Scholar 

  45. Wang, N., and D. Stamenovic. Mechanics of vimentin intermediate filaments. J. Muscle Res. Cell Motil. 23(5–6):535–540, 2002.

    Article  Google Scholar 

  46. Wang, Y., et al. Substrate stiffness regulates the proliferation, migration, and differentiation of epidermal cells. Burns 38(3):414–420, 2012.

    Article  Google Scholar 

  47. Windoffer, R., et al. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. J. Cell Biol. 194(5):669–678, 2011.

    Article  Google Scholar 

  48. Yeung, T., et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60(1):24–34, 2005.

    Article  Google Scholar 

  49. Yip, C. Y., et al. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 29(6):936–942, 2009.

    Article  Google Scholar 

  50. Zamansky, G. B., U. Nguyen, and I. N. Chou. An immunofluorescence study of the calcium-induced coordinated reorganization of microfilaments, keratin intermediate filaments, and microtubules in cultured human epidermal keratinocytes. J. Investig. Dermatol. 97(6):985–994, 1991.

    Article  Google Scholar 

  51. Zarkoob, H., et al. Substrate stiffness affects human keratinocyte colony formation. Cell. Mol. Bioeng. 8(1):32–50, 2015.

    Article  Google Scholar 

Download references

Acknowledgments

Support of this work was provided by the National Science Foundation (National Science Foundation CAREER CMMI 1452728) and the Carver Charitable Trust #14-4384 and #18-5045. In addition, J.C.S. acknowledges the Dermatology Foundation for their support of this work through a career development award. Work in the Magin lab is supported by the DFG (German Research Council; MA1316-15, MA1316-17, MA1316-19, MA1316-21, INST 268/230-1).

Conflict of interest

Hoda Zarkoob, Sathivel Chinnathambi, Spencer A. Halberg, John C. Selby, Thomas M. Magin, and Edward A. Sander declare that they have no conflict of interest.

Ethical Standards

No human or animal studies or were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Sander.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarkoob, H., Chinnathambi, S., Halberg, S.A. et al. Mouse Keratinocytes Without Keratin Intermediate Filaments Demonstrate Substrate Stiffness Dependent Behaviors. Cel. Mol. Bioeng. 11, 163–174 (2018). https://doi.org/10.1007/s12195-018-0526-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-018-0526-y

Keywords

Navigation