Skip to main content
Log in

Biodiesel Production via Esterification of Palm Fatty Acid Distillate Using Sulphonated Multi-walled Carbon Nanotubes as a Solid Acid Catalyst: Process Study, Catalyst Reusability and Kinetic Study

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This study reports on biodiesel production via the esterification of palm fatty acid distillate (PFAD) using sulphonated multi-walled carbon nanotubes (s-MWCNTs) as a catalyst. The process parameters studied included the methanol-to-PFAD ratio (8–30), catalyst loading (1–3 wt%), reaction temperature (80–200 °C) and reaction time (1–5 h). A fatty acid methyl ester (FAME) yield of 93.5 % was obtained at a methanol-to-PFAD ratio of 20, catalyst loading of 3 wt%, reaction temperature of 170 °C and reaction time of 2 h. The s-MWCNTs exhibited good catalytic activity, with a FAME yield higher than 75 % even after five repeated runs. Moreover, the regeneration of the spent s-MWCNTs (after five runs) with sulphuric acid was able to restore the catalytic activity to its original level. The catalyst stability and activity were enhanced by acid regeneration to achieve a FAME yield of 86.2 %, even at the fifth cycle of reaction after acid regeneration. A pseudo-homogeneous kinetic model for the esterification of PFAD with methanol using s-MWCNTs as a catalyst was then developed based on the experimental results. The pre-exponential factor, molar heat and activation energy for the esterification were found to be 1.9 × 102 L mol−1 min−1, 84.1 kJ mol−1 and 45.8 kJ mol−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kargbo DM (2010) Biodiesel production from municipal sewage sludges. Energy Fuels 24(5):2791–2794. doi:10.1021/ef1001106

    Article  CAS  Google Scholar 

  2. Shah K, Parikh J, Maheria K (2014) Optimization studies and chemical kinetics of silica sulfuric acid-catalyzed biodiesel synthesis from waste cooking oil. Bioenerg Res 7(1):206–216. doi:10.1007/s12155-013-9363-y

    Article  CAS  Google Scholar 

  3. Shuit SH, Lee KT, Kamaruddin AH, Yusup S (2010) Reactive extraction of Jatropha curcas L. seed for production of biodiesel: process optimization study. Environ Sci Technol 44(11):4361–4367. doi:10.1021/es902608v

    Article  CAS  PubMed  Google Scholar 

  4. Koberg M, Gedanken A (2012) Direct transesterification of castor and Jatropha seeds for FAME production by microwave and ultrasound radiation using a SrO catalyst. Bioenerg Res 5(4):958–968. doi:10.1007/s12155-012-9210-6

    Article  CAS  Google Scholar 

  5. Kansedo J, Lee KT, Bhatia S (2009) Cerbera odollam (sea mango) oil as a promising non-edible feedstock for biodiesel production. Fuel 88(6):1148–1150. doi:10.1016/j.fuel.2008.12.004

    Article  CAS  Google Scholar 

  6. Alberici R, Souza V, Sá G, Morelli S, Eberlin M, Daroda R (2012) Used frying oil: a proper feedstock for biodiesel production? Bioenerg Res 5(4):1002–1008. doi:10.1007/s12155-012-9216-0

    Article  CAS  Google Scholar 

  7. Shibasaki-Kitakawa N, Tsuji T, Kubo M, Yonemoto T (2011) Biodiesel production from waste cooking oil using anion-exchange resin as both catalyst and adsorbent. Bioenerg Res 4(4):287–293. doi:10.1007/s12155-011-9148-0

    Article  Google Scholar 

  8. Cho HJ, Kim J-K, Cho H-J, Yeo Y-K (2012) Techno-economic study of a biodiesel production from palm fatty acid distillate. Ind Eng Chem Res 52(1):462–468. doi:10.1021/ie301651b

    Google Scholar 

  9. Cheah KY, Toh TS, Koh PM (2010) Palm fatty acid distillate biodiesel. INFORM:264–266

  10. Shuit SH, Yee KF, Lee KT, Subhash B, Tan SH (2013) Evolution towards the utilisation of functionalised carbon nanotubes as a new generation catalyst support in biodiesel production: an overview. RSC Advances 3(24):9070–9094. doi:10.1039/c3ra22945a

    Article  CAS  Google Scholar 

  11. Borges ME, Díaz L (2013) Catalytic packed-bed reactor configuration for biodiesel production using waste oil as feedstock. Bioenerg Res 6(1):222–228. doi:10.1007/s12155-012-9246-7

    Article  CAS  Google Scholar 

  12. Lin L, Li X, Cui F, Zhou H, Shen X, Dong M (2012) Transesterification of rapeseed oil to biodiesel on CaO/α-Fe hollow fiber catalyst: optimization by response surface methodology. Bioenerg Res 5(4):949–957. doi:10.1007/s12155-012-9209-z

    Article  CAS  Google Scholar 

  13. Takagaki A, Toda M, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M (2006) Esterification of higher fatty acids by a novel strong solid acid. Catal Today 116(2):157–161. doi:10.1016/j.cattod.2006.01.037

    Article  CAS  Google Scholar 

  14. Mo X, Lotero E, Lu C, Liu Y, Goodwin J (2008) A novel sulfonated carbon composite solid acid catalyst for biodiesel synthesis. Catal Lett 123(1):1–6. doi:10.1007/s10562-008-9456-y

    Article  CAS  Google Scholar 

  15. Zong M-H, Duan Z-Q, Lou W-Y, Smith TJ, Wu H (2007) Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chem 9(5):434–437

    Article  CAS  Google Scholar 

  16. Mar WW, Somsook E (2012) Sulfonic-functionalized carbon catalyst for esterification of high free fatty acid. Procedia Eng 32(0):212–218. doi:10.1016/j.proeng.2012.01.1259

    Article  CAS  Google Scholar 

  17. Liu R, Wang X, Zhao X, Feng P (2008) Sulfonated ordered mesoporous carbon for catalytic preparation of biodiesel. Carbon 46(13):1664–1669

    Article  CAS  Google Scholar 

  18. Shu Q, Zhang Q, Xu G, Nawaz Z, Wang D, Wang J (2009) Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst. Fuel Process Technol 90(7–8):1002–1008. doi:10.1016/j.fuproc.2009.03.007

    Article  CAS  Google Scholar 

  19. Shu Q, Zhang Q, Xu G, Wang J (2009) Preparation of biodiesel using s-MWCNT catalysts and the coupling of reaction and separation. Food Bioprod Process 87(3):164–170. doi:10.1016/j.fbp.2009.01.004

    Article  CAS  Google Scholar 

  20. Kastner JR, Miller J, Geller DP, Locklin J, Keith LH, Johnson T (2012) Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal Today 190(1):122–132. doi:10.1016/j.cattod.2012.02.006

    Article  CAS  Google Scholar 

  21. Sharma YC, Singh B, Korstad J (2011) Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. Biofuels Bioprod Bioref 5(1):69–92. doi:10.1002/bbb.253

    Article  CAS  Google Scholar 

  22. Lee JS, Saka S (2010) Biodiesel production by heterogeneous catalysts and supercritical technologies. Bioresour Technol 101(19):7191–7200. doi:10.1016/j.biortech.2010.04.071

    Article  CAS  PubMed  Google Scholar 

  23. Zhou W, Xiao J, Chen Y, Zeng R, Xiao S, Nie H, Li F, Song C (2010) Sulfonated carbon nanotubes/sulfonated poly(ether sulfone ether ketone) composites for polymer electrolyte membranes. Polym Adv Technol 22(12):1747–1752. doi:10.1002/pat.1666

    Article  Google Scholar 

  24. Shuit SH, Tan SH (2014) Feasibility study of various sulphonation methods for transforming carbon nanotubes into catalysts for the esterification of palm fatty acid distillate. Energ Convers Manage. doi:10.1016/j.enconman.2014.01.035

    Google Scholar 

  25. Villa A, Tessonnier J-P, Majoulet O, Su DS, Schlögl R (2010) Transesterification of triglycerides using nitrogen-functionalized carbon nanotubes. ChemSusChem 3(2):241–245. doi:10.1002/cssc.200900181

    Article  CAS  PubMed  Google Scholar 

  26. Tesser R, Di Serio M, Guida M, Nastasi M, Santacesaria E (2005) Kinetics of oleic acid esterification with methanol in the presence of triglycerides. Ind Eng Chem Res 44(21):7978–7982. doi:10.1021/ie050588o

    Article  CAS  Google Scholar 

  27. Berrios M, Siles J, Martín MA, Martín A (2007) A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil. Fuel 86(15):2383–2388. doi:10.1016/j.fuel.2007.02.002

    Article  CAS  Google Scholar 

  28. Su C-H, Fu C-C, Gomes J, Chu IM, Wu W-T (2008) A heterogeneous acid-catalyzed process for biodiesel production from enzyme hydrolyzed fatty acids. AIChE J 54(1):327–336. doi:10.1002/aic.11377

    Article  CAS  Google Scholar 

  29. Su C-H (2013) Kinetic study of free fatty acid esterification reaction catalyzed by recoverable and reusable hydrochloric acid. Bioresour Technol 130(0):522–528. doi:10.1016/j.biortech.2012.12.090

    Article  CAS  PubMed  Google Scholar 

  30. Shuit SH, Ong YT, Lee KT, Subhash B, Tan SH (2012) Membrane technology as a promising alternative in biodiesel production: a review. Biotechnol Adv 30(6):1364–1380. doi:10.1016/j.biotechadv.2012.02.009

    Article  CAS  PubMed  Google Scholar 

  31. Lam MK, Lee KT, Mohamed AR (2009) Sulfated tin oxide as solid superacid catalyst for transesterification of waste cooking oil: an optimization study. Appl Catal, B 93(1–2):134–139. doi:10.1016/j.apcatb.2009.09.022

    Article  CAS  Google Scholar 

  32. Goto S, Tagawa T, Yusoff A (1991) Kinetics of the esterification of palmitic acid with isobutyl alcohol. Int J Chem Kinet 23(1):17–26. doi:10.1002/kin.550230103

    Article  CAS  Google Scholar 

  33. Bart HJ, Reidetschlager J, Schatka K, Lehmann A (1994) Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis. Ind Eng Chem Res 33(1):21–25. doi:10.1021/ie00025a004

    Article  CAS  Google Scholar 

  34. Aafaqi R, Mohamed AR, Bhatia S (2004) Kinetics of esterification of palmitic acid with isopropanol using p-toluene sulfonic acid and zinc ethanoate supported over silica gel as catalysts. J Chem Technol Biotechnol 79(10):1127–1134. doi:10.1002/jctb.1102

    Article  CAS  Google Scholar 

  35. Nijhuis TA, van Koten G, Kapteijn F, Moulijn JA (2003) Separation of kinetics and mass-transport effects for a fast reaction: the selective hydrogenation of functionalized alkynes. Catal Today 79–80(0):315–321. doi:10.1016/S0920-5861(03)00055-5

    Article  Google Scholar 

  36. Melero JA, Iglesias J, Morales G (2009) Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chem 11(9):1285–1308

    Article  CAS  Google Scholar 

  37. Darnoko D, Cheryan M (2000) Kinetics of palm oil transesterification in a batch reactor. J Am Oil Chem Soc 77(12):1263–1267. doi:10.1007/s11746-000-0198-y

    Article  CAS  Google Scholar 

  38. Pasias S, Barakos N, Alexopoulos C, Papayannakos N (2006) Heterogeneously catalyzed esterification of FFAs in vegetable oils. Chem Eng Technol 29(11):1365–1371. doi:10.1002/ceat.200600109

    Article  CAS  Google Scholar 

  39. Vicente G, Martínez M, Aracil J (2006) Kinetics of Brassica carinata oil methanolysis. Energy Fuels 20(4):1722–1726. doi:10.1021/ef060047r

    Article  CAS  Google Scholar 

  40. Aranda DG, Santos RP, Tapanes NO, Ramos A, Antunes O (2008) Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids. Catal Lett 122(1–2):20–25. doi:10.1007/s10562-007-9318-z

    Article  CAS  Google Scholar 

  41. Vyas AP, Subrahmanyam N, Patel PA (2009) Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst. Fuel 88(4):625–628. doi:10.1016/j.fuel.2008.10.033

    Article  CAS  Google Scholar 

  42. Liu X, Piao X, Wang Y, Zhu S (2010) Model study on transesterification of soybean oil to biodiesel with methanol using solid base catalyst. J Phys Chem A 114(11):3750–3755. doi:10.1021/jp9039379

    Article  CAS  PubMed  Google Scholar 

  43. Gan S, Ng HK, Chan PH, Leong FL (2012) Heterogeneous free fatty acids esterification in waste cooking oil using ion-exchange resins. Fuel Process Technol 102(0):67–72. doi:10.1016/j.fuproc.2012.04.038

    Article  CAS  Google Scholar 

  44. Sivakumar P, Sindhanaiselvan S, Gandhi NN, Devi SS, Renganathan S (2013) Optimization and kinetic studies on biodiesel production from underutilized Ceiba Pentandra oil. Fuel 103(0):693–698. doi:10.1016/j.fuel.2012.06.029

    Article  CAS  Google Scholar 

  45. Mootabadi H, Salamatinia B, Bhatia S, Abdullah AZ (2010) Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. Fuel 89(8):1818–1825. doi:10.1016/j.fuel.2009.12.023

    Article  CAS  Google Scholar 

  46. López DE, Goodwin JG Jr, Bruce DA, Lotero E (2005) Transesterification of triacetin with methanol on solid acid and base catalysts. Appl Catal A Gen 295(2):97–105. doi:10.1016/j.apcata.2005.07.055

    Article  Google Scholar 

  47. Alonso DM, Mariscal R, Moreno-Tost R, Poves MDZ, Granados ML (2007) Potassium leaching during triglyceride transesterification using K/γ-Al2O3 catalysts. Catal Commun 8(12):2074–2080. doi:10.1016/j.catcom.2007.04.003

    Article  CAS  Google Scholar 

  48. Lee DW, Park YM, Lee KY (2009) Heterogeneous base catalysts for transesterification in biodiesel synthesis. Catal Surv Asia 13:63–77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Siew Hoong Shuit acknowledges the support of the Ministry of Higher Education of Malaysia through the MyPhD Fellowship. This research was also financially supported by the Universiti Sains Malaysia Research University (RU) grant (A/C:814142), the USM Membrane Cluster Grant and the Postgraduate Research Grant Scheme (PRGS) (A/C: 8044028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Huat Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuit, S.H., Tan, S.H. Biodiesel Production via Esterification of Palm Fatty Acid Distillate Using Sulphonated Multi-walled Carbon Nanotubes as a Solid Acid Catalyst: Process Study, Catalyst Reusability and Kinetic Study. Bioenerg. Res. 8, 605–617 (2015). https://doi.org/10.1007/s12155-014-9545-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9545-2

Keywords

Navigation